3D Printable Low Cost Servo Based RobotQuad

If you have some extra cheap servos and an Arduino you can use them to make this open source quadruped RobotQuad. It was developed by Regis Hsu and as open source project and its design is updated frequently. It should be a very affordable thing to build as all the servos needed will cost some 20 USD.
In the linked Instructable there are also possibilities to make a remote control unit and IR obstacle detection.

Here is the version 3.0 whit some dance music:




Detailed build instructions can be found at:

https://www.instructables.com/id/DIY-Spider-RobotQuad-robot-Quadruped/

https://www.thingiverse.com/thing:1009659


Hari Wiguna made a video about his build:





I really like the DIY aesthetics of this robot:


3D Printed DIY Leather Stamps

Black Beard Projects made a video where he shows how he designs leather stamps in Fusion 360 and how he uses them to make patterns with a hand press. With this method, you can make any number of highly custom stamps you need without buying them or waiting for delivery.
It is another great example how 3d printing can be used in even more traditional handcrafts.





Here is the creator's FB page:

https://www.facebook.com/BlackBeardProjects/


Here is the close-up of the stamp making a pattern on a hand-made leather knife sheet



Aleph Objects and IC3D Develop First Open Source Filament

Aleph Objects, makers of the LulzBot brand of desktop 3D printers and parts announced a partnership with IC3D to develop the first open source filament. The main goal is to democratize manufacturing.
The filament is Open Source Hardware Association (OSHW) certified.



Video of the talk at the 2017 Midwest RepRap festival:



GitHub repository with filament specifications and other materials:

https://github.com/IC3DPrinters/filament-extrusion/tree/master/Open%20Source%20Filament


Lulzbot is also selling the filament at 35USD per 1kg spool:

https://www.lulzbot.com/store/filament/IC3D-ABS

Source news release:

https://www.lulzbot.com/filament-freedom

Cytosurge FluidFM µ3Dprinter is world’s first sub-micron metal 3D printer

Cytosurge AG, based in Zurich Switzerland, presents their revolutionary FluidFM µ3Dprinter which is world’s first 3D sub-micron direct metal printing machine.
This 3D printer could be used as an advanced tool for development of many new scientific and engineering applications from biology to nanorobotics.
It is one of the first steps towards practical manufacturing of parts for nanobots floating in your body to repair the damaged cells.







From the video description:
At the forefront of nanotechnology, additive manufacturing, life sciences and single cell biology, Cytosurge FluidFM µ3Dprinter is the world’s first 3D printer capable of delivering sub-micron resolution in direct metal printing, while offering scalability and good prospects in both production cost and speed.
The FluidFM technology opens a new world for metal object manufacturing and enables research opportunities in fields such as microelectronics, semiconductors, surface modification, microbots, sensors, material science and many other fields. Virtually any design can be offered to the system, including overhanging structures with 90 degree angles, without support structures or post processing steps.
High-precision surface modification processes can also be executed by printing ultra-thin or structured objects and by depositing multiple metals at the target surface. With the FluidFM µ3Dprinter various metals like Cu, Ag, Au, Pt can be printed.
The printing of other metals (Sn, Cd, Cr, Ni etc.) and various alloys are under investigation.


Company homepage:

https://www.cytosurge.com/page/micro3dprinting



TriDInnov 3D Prints Electronic Components on Plastic Surfaces

Looks like TriDInnov from France has a working technology that prints conductive electronics on plastic surfaces. 






Technology description:
Startup company TriDInnov provides additive metallization for plastic and composite materials electronic packaging, is linked through a closed partnership with equipment manufacturer Kelenn Technology, launching the new Kelenn Technology DMD 100, an off-contact digital dispenser which deposits the TDI thick film formulation EOPROM (primer formulation for metallization process) showcasing their prototype circuits which have been manufactured with the DMD 100, depositing their EOPROM thick film formulation on molded device.
TriDInnov's technology brings to the electronic packaging market a new manufacturing process which repositions the MID towards new business areas such as to add value to composite materials especially in the automotive area. They are to invest in a technology platform in order to manufacture MID prototypes circuits for their customers in order to push their technology acceptance in the marketplace.

http://tridinnov.com/


BlackBelt 3D printer works with conveyor belt print surface

BlackBelt is a new 3D printer that uses a carbon fiber conveyor belt as build surface. As it prints at an angle it can produce really long objects.  It can make many different objects in series or one big object.
Due to geometry and angle, some objects will need a "starter" object or support to hang on to.
It is also possible to print support-free overhangs!




































BlackBelt specifications:

  • Industrial linear guides
  • Build volume of 13″ x 13″ x infinity
  • Adjustable print angles: 45° is the default, but some parts come out better at the lower angles of 15°, 25°, and 34°
  • 1.75 mm filament diameter
  • €9,500 for desktop version, €12,500 for large system with standing supports

This machine looks very interesting, but what gets me suspicious is a lack of video material. There are only a few short videos and no reviews, tests or extensive presentations.




Update (19.06.2017.):

BlackBelt went on Kickstarter and they announced that they have a patent pending, the 3d printing community claimed that there are issues about that since there were similar open sourced systems.
More can be found at:

http://hackaday.com/2017/06/06/the-ip-of-the-infinite-build-volume-3d-printer/

Detailed Guide On How To Build Ultimaker 2 Extended Clone

You really want to have an Ultimker 2+ Extended but don't have the money? You support open source and hold a grudge against Ultimaker for going closed source? Well, here is a perfect project for you.
Betrue3d site has a detailed guide on how to make an open source version with all the details you will need.
Great work betrue3d!



Here is the link to the first post in the series:

https://betrue3d.dk/en/lets-build-an-ultimaker-2-extended-clone-part-1/

3D Printable DIY Rotary Tool aka. Dremel Clone

Makernaut developed and published this great 3d printable rotary tool or Dremel. It looks easy to make even with entry level electronics skills and has three 3d printed enclosure parts.

It is powered by 12V DC motor (listed as 6000 rpm, RS-550S motor, diameter~37mm), it has PWM DC motor controller (3A) and mini chuck / collet set for 3.17mm shaft to hold the tool bits.


Here is the build guide video with a short demonstration:




Full Instructables with STLs and parts list can be found at:

https://www.instructables.com/id/3d-Printed-DIY-Dremel-style-Rotary-Tool/

You can also go and see Makernaut's youtube channel:

https://www.youtube.com/channel/UCAFh1MH4rPop-ca2jyPhcpQ



New 3D Printed Airplane Seats Could Make Huge Savings

Autodesk researcher Andreas Bastian used advanced generative design to make a new type of lightweight airplane seat that could make huge savings on fuel and money if applied in future aircraft.
Due to complex geometry, the seat was made on Cronus 3D printer with 5 printheads and then cast in metal.

Project description:
The structure was 56% lighter than the conventional aluminum seats. With 30% calculated to be purely down to the generative design.
Autodesk believes these weight savings could rapidly reduce fuel emissions and thus drastically save costs. Calculating the projected cost savings, the team evaluated the weight savings into fuel savings.
By doing so, the project cites an estimate of $200 million USD in possible reductions over the lifetime of a fleet of 100 aircraft. Additionally, the team calculates fuel emission savings that could compare to removing 80,000 cars off the road for a year.




























Source:

https://3dprintingindustry.com/news/autodesk-believes-3d-printed-airplane-seat-save-airlines-millions-dollars-113082/

DIY Mobile Laser Cutter in 3D Printed Frame by Josh Hughes

Josh Hughes is developing a DIY handheld mobile laser cutter and engraver in 3d printable housing. In theory with this device, you would not be limited by a surface and it could work on a battery power.


Here is a design study:





Here is a model of 3d printable enclosure body, the design is now more refined with more ergonomic side handles:



Here is a prototype working with, what seems like, salvaged laser diode and optical drives:




You can follow the process on developers YT channel:

https://www.youtube.com/channel/UCTzJuMQVJcEWoAwnt5dS5wQ


Laser engravings made as a test 


Three Hyper Cool 3D Printed Chairs

Here are three 3d printed chairs that look very futuristic and HYPER cool. They will probabyl find their place in some modern art gallery or in a tech billionaires mansion.


Voxel chair v1.0 by the Bartlett's Design Computation Lab




Source and more info:

https://www.dezeen.com/2017/05/17/robot-made-voxel-chair-new-software-bartlett-researchers-design-furniture-technology-chairs-robots/


Lilian van Daal's  Biomimicry chair



Source and more info:

http://www.dezeen.com/2015/01/30/movie-lilian-van-daal-3d-printed-biomimicry-chair/


Jungsub Shim's Connect chair made by hand with 3d printing pen




Source and more info:

https://www.dezeen.com/2017/02/12/connect-jungsub-shi-design-furniture-chairs-3d-printing/


Well, they look cool, but are they comfortable? I doubt it. I'm actually pretty certain that they are almost unusable. I like my cheap Chinese faux-leather lazy-boy copy, chewed out by my dogs, where I can chillax with beer and chips in front of the TV.

Design thin PLA objects and make them strong in your oven

"CNC Kitchen" published this great video on how he designed gardening clips for his raspberries. He focuses on how to design thin-walled object in Fusion 360 and how to make it more weather resistant and stronger by annealing them in his oven.


Here is the video where you will learn a nice and easy design flow process and see several tools in action:




Here is the clip STL:

http://a360.co/2qouqQO

Here is the CNC Kitchen YT channel:

https://www.youtube.com/channel/UCiczXOhGpvoQGhOL16EZiTg


And here are the PLA clips in the oven at 80C for 1 hour:



How to reduce rattling noise on your 3d printer

Tech2C, an Aussi 3d printing youtube, made this video where he shows how to eliminate and reduce the noise, vibration or rattling for his 3d printer.

He uses a HyperCube 3D Printer but his guide is applicable for almost any machine. Used upgrades are rubber feet, foam insulation, stepper motor dampeners or shock absorbers and TMC 2100 stepper drivers with stealthChop mode.






There is a great comment thread under that video with many additional ideas.

Tech2C YouTube channel link:

https://www.youtube.com/channel/UC_scf0U4iSELX22nC60WDSg


Astrosyn shock absorber for NEMA17 used:


Amazing Laser Cut and 3D Printed Art by John Edmark

John Edmark creates the most amazing art pieces inspired by fractal geometry, spirals and natural organic shapes using laser cutting and 3d printing.





The laser cut movable tentacle gripper from plywood is something I would like to make...


The art of John Edmark is described in depth in this talk by Paul Dancstep:




Artist's homepage with detailed presentations of many sculptures:

http://www.johnedmark.com/



CNC Rotary Modifications and Portrait Sculpt

I've been further experimenting with the rotary axis on my router this week. The first goal was to produce a small head sculpture. The idea was to make a wood version of this sculpt I'd previously 3D printed. This is the result:
 

Milling a New Block - A Small Test

I started with a small block of Poplar, roughly 4" x 4" x 6". Poplar is really nice - huge trees so it's easy to get large, clear chunks of wood. I can get 16/4 (4" thick in the rough) near where I live. Poplar has a pleasing, subtle grain pattern. It's downside is the color (often a slight greenish cast with lighter sapwood). Staining can be used to make this more uniform and pleasing but applied to the raw wood it tends to be very blotchy. So sealing before staining is required.

Tools

The tools I used get divided into roughing (taking off large amounts of wood), finishing (taking the form from rough to smooth), and detail (drawing in fine detail). Roughing are at the top, finishing in the middle, and detail at the bottom. The lowest tool is an extender giving the tools a greater reach.

Roughing happens with tools called end mills. These tool cut on the side of the tool as well as the end. They have sharp corners.

Finishing happens with ball end tools. These cut a curved bottom trough. Lowering the step over of each successive cuts makes the surface smoother and smoother.


These are the end mills I use:

Large Roughing: 1/2" 4 Flute Extra Long High Speed Steel End Mill

Medium Roughing: 3/8" 4 Flute Extra Long High Speed Steel End Mill

Fine Finishing: 1/8" 4 Flute Long Ball End Mill

Pencil: 1/16" 3 Flute Ball Nose End Mill

I also use this extender: Tool Holder Extension


Stock Preparation

The block was jointed on two perpendicular faces to make one reference corner where all the measurements could be taken from. 

For the chuck of the head stock to grip the block you need a square chunk of material. These is easily done by gluing on small plywood blocks to the ends of the block. 


Roughing

Here are some photos of the cutting process - roughing passes on all four sides. This is done with a 3/8" bit. Depth is 1/4", step over is 1/4". I left 0.1" of stock above the finished surface on the roughing passes.


The final side doesn't have much wood left!

Finishing 

The next step is smoothing passes over each side. Because of limited length of the flutes on the cutters and tool reach it is programmed to only go so deep (and thus so far laterally on each side). I used a 1/8" ball end mill.

Continuing to rotate to each side the final form becomes clearer:

That tool is tapered 1 degree. Even that small amount is problematic in this application. I'll use straight tool next time.


Detail - Pencil Toolpath

The final pass, in this case done on just the face side, was a Pencil Toolpath. It automatically finds the crevices in the form and follows them. Here's the mesh surface in green with the tool path in cyan and the lead-ins and traverses in yellow.


Here's the sculpt without the pencil cut yet - you can see the lack of definition in the eyes, nose and mouth:

I cut it a few times, quickly adjusting the Z0.0 point, with each pass going 0.01" deeper, until I got it looking the way I wanted:

Also of note is the extra material around the neck. This can't be easily reached using the depth I had set so it has to be removed by hand with carving tools. Some has been carved away already on one side.

Trimming and Carving

The sculpt has to be cut free of the support material at the top and bottom. The bottom is really useful for clamping in a vise so that's the last thing to go. First step is to band saw off the top support leaving enough to carve down to the hair: 

To clean up the neck and hair doesn't require many tools. A V gouge, a U Gouge and a variety of flatter and wider gouges. 



Here's the clean up in progress:

Finishing

After some detail sanding using tools like those shown below I applied two coats of satin polyurethane.



A Larger Test

This next attempt was 10" long, 6.5" thick and 7.75" wide laminated from two pieces of 16/4 Basswood. Same 3D model just scaled up.

For the roughing of this block I used the 3/8" four-flute upshear endmill. I started with a step-down of 3/8" and a step-over of 1/4". That's very reasonable if the block was fixed to the table! Let's see how it went shall we?!

As before I glued on 2"x 2" plywood blocks to grip the stock:

Clamped in the head stock chuck it's ready to go.

It started fine but during a helix lead-in the upward pull of the endmill was too much for the rotary motor to hold - the block twisted and the bit gouged it. It was a high speed steel bit (which can handle more deflection than solid carbide) so no tool breakage. And the slash was into material that'd be removed anyway. So no harm done. Disappointing though ... the helix cut that caused it to give way wasn't even all the way towards the edge of the block. Hmmm...

I changed the roughing settings to a 1/4" step-down and 1/8" step-over. I also halved the plunge angle of the entry helix. This is a lot more gentle (and a lot slower!)

With that change the cutting went okay. This block is Basswood. Woodworkers know this cuts beautifully with gouges - a real pleasure. As you can see it's pretty fuzzy when cut on the endgrain with router cutters.


Here's the result after some quick sanding. It would need more to really refine it but I'm going to simply use this test to show my students the difference between roughing and finishing. Also the difference in surface quality between milling side grain and end grain.

Another problem with this large block... tool reach. In particular the length of the cutting edge of the 1/8" ball-end mill I was using. It has a 1" cutting length and a 3" overall length. Not adequate for the back of the head.

The tool extender shown in the image above can certainly help in some cases. But it's about 1" wide at the chuck. This width can be a problem when trying to reach down to near vertical surfaces to mill.

I have some tapered tools but there's an issue with the taper affecting the shape beyond the cutting tip.

More Holding Power

Sooooooo... I think the holding power of the motor that came with the rotary kit was quite disappointing! I decided to replace it. The one that came with the rotary kit has a holding torque of 3.5N/m. The one I replaced it with has 6.8N/m - nearly twice as much. Here's a picture comparing the two (new one installed, old above it). The new one is longer and heavier and much better made. It uses 7 amps rather than 4.8 so I had to change the DIP switches on the motor controller in the electronics cabinet.

The existing timing pulley worked fine on the new motor shaft. I just had to remove the key from the shaft before sliding it on and securing the set screws.

So far this feel much more solid. But more milling is required to really know.

Areas for Improvement

I want to have deeper holding blocks. 0.7" Baltic Birch plywood is not thick enough. The tools come too close to the head stock chuck. I had no collisions but it is nerve wracking. I'd also like to devise a way to re-register the block in the machine if I need to take it out for any reason.

I attended a workshop on Audoesk Fusion 360 software. I was impressed by the toolpath programming options available. I've been using Mastercam for years. But there's a lot to like about Fusion - and it's MUCH cheaper. I'm very interested in some of its toolpath options for quick roughing. They helix plunge the tool in much deeper and take repeated shallow, circular cuts. This is better than the parallel cuts I used because they engage more of the tool length. For finishing they have some nice toolpaths to deal with the change from mostly horizontal to mostly vertical surfaces. This is a problem with the parallel approach I used.

So that's where I'm headed next.

SelfCAD is a new browser based CAD and slicer software

SelfCAD is a new browser based CAD and slicer application with many powerful features but focused on simplicity and usability. It has a subscription based model with a free trial and has a somewhat high cost for the benefit it provides.


Here is how SelfCAD is described:
SelfCAD 's mission is to make 3D designing and printing accessible to everyone, including professional designers, as well as hobbyists and students who have little to no prior expertise using CAD/CAM software. One of the greatest achievements of SelfCAD is its simplicity and a low entry price point. Advanced shapes can be created within minutes using various shape creators.
SelfCAD is an online browser-based CAD/CAM platform which allows the you to model, sculpt, slice and print online. With SelfCAD, you do not have to spend months learning complex software and pay hundreds of dollars for the privilege. SelfCAD is about simplicity, affordability and accessibility. Learn, create, and print objects in a fraction of the time required with traditional CAD/CAM software.

SelfCAD introduction video:





Here is one of the feature demonstrations focusing on 3d screw generator:




Slicer video tutorial:





You can check it out at:

https://www.selfcad.com/

SelfCAD has a very active YouTube channel with many tutorials and feature demonstrations:

SelfCAD on YouTube

Here is an interview with the CEO and founder, Aaron Breuer:

http://www.3dnatives.com/en/selfcad-interview010520174/

Podcast interview on 3D Start Point: https://3dstartpoint.com/teach-your-selfcad-with-aaron-breuer/


SelfCAD user interface

3D Printable DIY 600 Watt Halbach Array DC Motor

Christoph Laimer, well known for his 3d printable motor designs, developed a new and more powerful DC motor. It has 600 Watts of output power and performs with more than the 80% efficiency. The magnets of the rotor are arranged as a Halbach array and the motor runs with a standard ESC widely used in different RC applications (plane, drone, car etc.).

This project is a perfect example how you can use 3d printing for some ver powerful and practical printable objects. This is not just another fidget spinner, THIS ROCKS!!!


Presentation video:





Construction tutorial video:





Testing with the propeller attached:




Project homepage where you can buy the files for 10 USD (well worth when you see how effective this design is):

https://www.makesea.com/web/cla/~/50612/profile/-/asset_publisher/Rl6cqGtVw4Vb/content/660-watt-3d-printed-halbach-array-brushless-motor

Very detailed step-by-step Instructables page:

http://www.instructables.com/id/600-Watt-3d-printed-Halbach-Array-Brushless-DC-Ele/



ESA 3D Prints Moondust Bricks for Space Colony Construction

Space colonies will be built with 3d printers. We will never see bricklayers and construction workers in space suits.





Technology description:
Bricks have been 3D printed out of simulated moondust using concentrated sunlight. This ESA project took place at the DLR German Aerospace Center facility in Cologne, with a 3D printer table attached to a solar furnace, baking successive 0.1 mm layers of moondust at a temperature of 1000°C. A 20 x 10 x 3 cm brick for building can be completed in around five hours.
DLR Cologne’s solar furnace has two working setups: as a baseline, it uses 147 curved mirror facets to focus either actual sunlight into a high temperature beam, employed to melt together the grains of regolith. But this mode is weather dependent, so a solar simulator was subsequently employed as well – based on an array of xenon lamps more typically found in cinema projectors.

ESA project homepage:

http://www.esa.int/Our_Activities/Space_Engineering_Technology/Printing_bricks_from_moondust_using_the_Sun_s_heat





SPRING Technologies announces the release of version 2017 of NCSIMUL SOLUTIONS


Performance and automation… Major enhancements for NCSIMUL 4CAM

Paris, 5 May. 17SPRING Technologies, vendor of software for the optimal and flexible use of Numerical Control machines, reducing costs and speeding product development, announces the latest version of its flagship NCSIMUL SOLUTIONS. The new version sets a groundbreaking benchmark for comprehensive control of the machining process, allying ease of use, flexibility and automation to build the Factory of the Future.

SPRING has focused its R&D on optimizing the performance of NCSIMUL 4CAM, the CAM add-on module and technological jewel in its offering. Based on SPRING’s expertise in the field, NCSIMUL 4CAM 2017 effectively brings users more efficient processes and integrates their best practice. With the new version of NCSIMUL 4CAM, manufacturers now have a decision-making tool that is reliable, flexible, secured and automated for selecting the production resources they want to deploy.


New features of Version 2017 of NCSIMUL SOLUTIONS and the NCSIMUL 4CAM module:

Ø  New probing strategies with checking and measurement of intermediary rough stocks:
·         User benefits: automatic compensation, taking into account tool wear during machining, where applicable;

Ø  Support for turning after milling, for one-click NC machine turnaround.
·         User benefits: automatic reprogramming for all NC tool and machine changes, delivering real flexibility and significant time-saving for CAM programmers and workshop scheduling.

Ø  The OPTITOOL option is built into NCSIMUL 4CAM 2017 enabling automation and optimization, especially all rapid motion, with graphic analysis enabling quick before/after comparison of improvements.
·         User benefits: one-click time-saving on each single machining cycle.

Ø  The NCSIMUL TOOL cutting tool management with 3D definitions, attachments and cutting conditions has been enriched, standardized and stored by material, machine and operation.
·         User benefits: operational time-saving on project go-live and capitalized best practices for cutting conditions and automated reuse.

Ø  One-click project update (phase calculation, simulation and ISO code restart, etc.); phase export/import to exchange project information with other customer sites or external partners.
·         User benefits: enhanced inter-company collaboration with sub-contractors, suppliers and customers, covering all or part of a project, enabling data exchange and securing the whole project.

Ø  Automatic performance analysis of the assembly for 5-axis NC machines. Automatic graphic detection of machining risk zones and less than optimal cutting conditions.
·         User benefits: automatic prediction of non-quality risks for 5-axis machining (surface condition, finishing).

Ø  3 new CAM programs have been added to the list of Workpackages available with NCSIMUL SOLUTIONS 2017: Alphacam, CATIA, Cimatron, Creo, Edgecam, ESPRIT, FeatureCAM, GibbsCAM, hyperMILL Mastercam, NX, PowerMILL, and TopSolid’Cam.

Gilles Battier, CEO of SPRING Technologies says:
“We have developed a product that is truly unique on the market. Ours is effectively the only approach that uses data from the workshop to deliver maximum productivity for NC machine tools, cutting costs and factoring in the four key parameters that set the cost price of a part: machine cost, material cost, cutting tool cost and programming/workshop costs. Manufacturers know the score and trust us. Going forward, it’s our job to continue developing NCSIMUL SOLUTIONS and its NCSIMUL 4CAM module to offer our customers the very best, bringing them tools that will deliver the extra competitive edge they need.

Breaking news… professionals across the NC business are praising NCSIMUL 4CAM. At the latest INTEC show, held in Germany from March 7 to 10 2017 and attended by top specialists, we were awarded another Trophy for Best Innovation. A jury of experts from industry, research centers and non-profit organizations singled out SPRING and NCSIMUL 4CAM for the INTEC Award, the third we have received for our solution in the last year. We are very proud of this achievement. The awards are a tangible acknowledgement of our focus on R&D: a tight coupling of software and machine to optimize the digital process.”


ABOUT SPRING TECHNOLOGIES
SPRING Technologies develops software solutions designed to optimize manufacturing companies' CNC machines to reduce costs and maximize productivity. Its product NCSIMUL SOLUTIONS® provides a complete and integrated mastery of the production process from engineering departments to the shop floor, including NC programming, machining simulation, cutting tool management, CNC program management and real time machine status monitoring. This unique approach simplifies the digital chain and provides needed tools and flexibility for the implementation of automated factories. Based in France, Germany, PR China and the USA, the company was founded in 1983 and collaborates with manufacturers in aerospace and defense, transportation, energy, industrial equipment and medical devices using CAM software such as Mastercam, CATIA, NX, CREO, TopSolidCAM, and others. Through its global network of resellers, SPRING supports its customers all over the world.
For more information, visit: www.ncsimul.com
NCEXPERIENCE, NCSIMUL, Optitool and NCdoc are registered trademarks of SPRING Technologies.

Press contacts:
Silvère Proisy - SPRING Technologies Inc. - General Manager - sproisy@ncsimul.com
Lynn Gorman - Lynn Gorman Communications LLC - lynn@gorcomm.com

Béatrice Fournie – Communication Manager SPRING Technologies - bfournie@ncsimul.com
12:06 PM

CNC CODE

5 axis cnc mill,5 axis cnc router,cad cnc,cc machine,cnc cutter machine,cnc cutting system,cnc definition,cnc equipment manufacturers,cnc fabrication,cnc lathe retrofit,cnc machine accessories,cnc machine automation,cnc machine business,cnc machine companies,cnc machine description,cnc machine maker,cnc machine news,cnc machine repair,cnc machine services,cnc machine shop,cnc machiner,cnc maching,cnc machining companies,cnc machining equipment,cnc machining parts

Labels

"7-Axis Robot" "Digital Fabrication" "Planar Polygons" "Rhino" "Rhinoscript" 2007. 2013 2014 2016 2d printing 2d to 3d 3-axis CNC 3-axis CNC Kit 30c3 3d capture 3d carving 3d cnc router 3d company 3d copy 3d display 3d drawing pen 3d model 3d piracy 3d print farms 3d print platform 3d print quality 3d printed 3d printed airoplane 3d printed airplane 3d printed buildings 3d printed car dashboard 3d printed car part 3d printed car parts 3d printed clothing 3d printed cyborg 3D Printed Figure Sculpture 3d printed food 3D Printed for in Ceramic 3d printed gun 3d printed machines 3d printed music instrument 3d printed music record 3d printed organs 3d printed parts 3D printed relief 3d printed rifle 3d printed robot 3d printed sensors 3d printed skateboard 3d printed toys 3d printed uav 3d printed vehicles 3d printed weapons 3d printer 3d printer accessory 3d printer crime 3d printer desk 3d printer eclosure 3d printer review 3d printer stand 3d printer table 3d printers comparison 3D printing 3d printing filament 3d printing in cement 3d printing materials 3d printing myths 3d printing on battery power 3d printing photographs 3D printing piracy 3D printing portraits 3d printing primer 3d printing systems 3d printing with carbon fiber 3d printing wood 3D printing ZBrush sculpts 3d printshow 3d puzzle 3d scanner 3d sensors 3d shaping cnc router 3d startup 3d systems 3d ui 3dea 3dMonstr 3doodler 3dPrinting 3dprintmi 3dprn 3dr 3dsimo 3ntr 4 Jaw Chuck 4-axis 4-axis CNC 4-axis cnc woodworking 4d printing 4th dimension 5 axis 5 axis cnc router china 5-axis 5-axis CNC 5-Axis CNC woodworking 5-axis router operating procedure 5d print d8 6 axis 7-axis robot 7512 abs abs juice acetal acetone acp cnc router acrylic acrylic board cut machine acrylic cut acrylic cutting activism adafruit Adafruit NeoPixel Strip adapto adobe advanced afinia africa Agilus Workcell Agilus Workcell Tutorial aio robotics air airbus aircraft airwolf3d alabaster aleph objects all-in-one aluhotendv4 aluminatus aluminum Amazon ampersand sign cutting AMRI amsterdam android animal antenna ao-101 app apple appropedia arburg archery Architectural Robotic Fabrication architecture architecutre hollow out. arduino Arduino Micro LED Arduino NeoPixels argentina armour arrow art artec artificial stone arxterra asia asiga astronomy atm australia austria Autodesk automation automotive b3 innovations baboi bacteria baddevices badprinter bag balance baluster process batteries beaglebone beams bebopr bed leveling bee Beer Caddies belgium Belle Kogan ben heck bendable bending bicycle big objects big printers bike biohacking bioprinter bitcoin blacksmith blade blade 1 blender blimp blind blizzident Block Delete blog blokify bluetooth board cut boeing bomb bone book Books boot Boring Cycle bottle bow bowden box bracets braille Bre Pettis bridging bronze brook drumm buccaneer build bukibot bukito bukobot burning man business busybotz buy china cnc router buy cnc router buy cnc router from china buy laser machine buy modillion carving machine buy router cnc bycicle parts cad calibration camera canada Canned Cycle canon car carbomorph carbon carbon fiber cardboard carmine cartesio cartouches carved architecture carving carving machine carving with gouges and rasps case cashier board cut casting Cathy Lewis cb printer ccc cell cellphone cellstruder central overhead elements. centrifuge cerajet ceramic ceramic tiles engraving cerberus CES ces 2012 CES 2013 ces 2014 ces 2015 cff chain maille chair chamber chart chefjet chemistry children china china cnc router china laser machine chipfuzer chocolate choose cnc router chopmeister chopper chris anderson Cincinnati circular platform clay clear figure sculpture clone closed loop cloud cnc CNC 4th axis CNC 5 Axis CNC Box CNC Coordintes CNC Corner Fix CNC cut acrylic figure sculpture CNC Cut Guitars cnc engraving machine. CNC Joints cnc mill CNC Rotary Axis cnc router cnc router aluminium cnc router art work cnc router copper cnc router cut acrylic cnc router factory cnc router foam cnc router importer CNC Router Kit cnc router manufacturer cnc router mdf cnc router modeling and prototyping cnc router mold cnc router packing CNC Router Parts Build CNC Router Parts Rotary Axis cnc router problem cnc router review cnc router type3 cnc router video cnc router work CNC routing file preparation CNC routing ZBrush CNC Tool Holders CNC Tools CNC walnut CNC Wood Joinery cnc wood router CNC Woodworking CNC Woodworking 5-axis Digital Fabrication Taubman College CNC Woodworking Sleigh Bed Digital Fabrication Tabuman College CNC-Woodworking co cody wilson coffee color changing filament colorfabb comic community company tour complex 3d print composite Composite Filament Fabrication concept concrete conductive ink consultancy Consumer Electronics Show contour crafting contouring Control control unit controller cool things to 3d print cooling copyright Corner Fix cosplay cost reduction cottle boards creaform creative commons Credit card fraud crime criminals croatia crowdfunding CT cube cubejet cubesat cubex cubify cubify invent cubify.com cups cura curaengine customized cut cut acrylic cutting cyberpunk Cycloidal Gyro Czech Republic d3d da vinci daily use dart gun data data matching tutorial data tree tutorial. dc motor decimation master deezmaker dell delta delta 3d printer delta forge deltaprintr demonstration denmark dental 3d printing desert design desktop 3d printing desktop cnc router desktop printer desktop production Developable Surfaces dglass 3d Digital Design digital fabrication Digital fabrication of figure sculpture Digital Fabrication Slip Casting digital figure sculpture Digital Portrait Sculpture Digital Sculpting Digital Sculpting Renders Digital Sculpting with Two Models Digital Woodworking dilbert disabled disney Display Conduit diy diy 3d metal printer diy 3d printing diy 3d printing companies diy science dlp dmls documentary double decker 3d printer Doubly Curved Surfaces dremel drill Drilling Cycle drivers DRM drone dual extruder dual extrusion duct tape duo e3d ecology economy edc education eff Egypt ejection electron beam electronics elon musk enclosure encryption energy generation engine Engraved Signs engraver engraving enrico dini environment envisiontec EOS epoxy EPS Foam EPS shaping ESA etching etsy euromold 2011 Euromold 2012 euromold 2013 euromold 2014 europe event eventorbot events evo exoskeleton experiment experimental 3d printing extended platform extruder eye glasses eyewear fabbot fablab fablab berlin fabtotum Face Grooving Cycle Facing Cycle fail fan fantasy figure Fanuc farm fashion Fasteners fdm Feed Rate felix festival fff fiberglass figulo. video Figure Sculpting in ZBrush figure sculpture in acrylic. filabot filaflex filament filament extruder filament winder filawinder Finishing Cycle finland fire firmware flexible flexible pla Flip cut flomio flower foam foam dart focus foldable food food safe foodini ford form 1 form 2 formlabs Formula foundry FRAC exhibition fractal frame framework France freed friction welding Front Drilling Cycle fuel3d fumes fun fundable furniture Furniture Design Future G Codes g-code G00 G01 G02 G02.1 G03.1 G07.1 G32 G33 G40 G41 G42 G70 G72 G73 G74 G75 G76 G77 G78 G79 G80 G83 G84 G85 G87 G88 G89 G90 G92 G94 gallium game gamechanger gaming Garage shop garage tool layout garden gartner ge gears geeks gemma geodesic geomagic germany gigabot github glass glass engraving cnc router glazing techniques glue gmax golemD google google glass gopro gpl granite Grasshopper Grasshopper attractor point Grasshopper data matching Grasshopper data trees Grasshopper Graph Mapper Grasshopper grids Grasshopper Image Sampler Grasshopper Light Painting Grasshopper Physics Simulation grasshopper planes tutorial Grasshopper tabs Grasshopper unroll tabs green guardian guerrilla gardening GUI guide Guitar Stand guitar stands gun magazines h-bot h480 Haas Vertical Mill hack hacking Hand carved rocking horse hand carving handheld handrail process haptic harvard Hass hbot hdpa health heat chamber heat gun heated 3d printing chamber heated build platform Helical Interpolation hexapod high strength HIPS history hollow out holograph Home Home CNC machine home manufacturing Home Shop CNC hot end hot glue Hot News hot to Hot-wire cutting hotend house household items how is china laser machine how is chinese cnc router how to HP humor huxley hybrid hype hyrel i2 i3 ice 3d printing idea lab ikea implant improv india indiegogo industrial industrial 3d printer infill infographic infrastructs injection molding ink inkjet 3d printer insects instructables instruction intel Intel Galileo intellectual property interior decoration interior decoration ceramic tiles interior design Interlocking Joint internet interview introduction to 3d printing Inventables ios ip ip rights ipad IR bed leveling irapid iron man Israel italy japan jet engine jewelry jinan laser jinan laser machine job jrx k8200 kai parthy kamermaker Kangaroo 2 Kangaroo 2 Catenary Kangaroo 2 Circle Pack Kangaroo 2 Planarize Kangaroo for Grasshopper Kangaroo Physics Kangaroo Tensile Forces kevlar key keyboard kickstarter kikai kinect kinetic sculpture kitchen cabinet process knife Korea kossel kossel air kraken Kuka PRC Kuka prc programming Kuka Robots KUKA|prc Kuka|prc sample l5 lamp large models large printer laser laser cut leather laser cutter laser cutting laser cutting foam laser cutting machine laser engraving machine laser machine laser machine sign laser machine video laser sintering lasercusing lasercut lasersaur latex lathe law lcd leap leapofrog leather led LED lights on figure sculpture leg lego lens lenticular printing letter cut letter cutting letter sign leveling leweb lewis LG liability library light bulb Light Painting Light Painting Stick limestone linear actuator Linear Bearings Linear Rails Linear Rails Upgrade link linux liquid Liquid Metal Jet Printing lisa lisa harouni lix lmd load bearing lock logo LOHAN london Longitudinal roughing cycle lost foam lost foam making lost foam mold making lost pla casting low cost low cost. LP lulzbot lumia lumifold lunavast lunchbox lyman lywood M Codes mach3 machine Machine Zero machinekit Machining machining wax madrid magazine magma magnetic filament magnets Mail (armour) maintenance make make magazine maker faire 2013 makeraser makerbot MakerBot Industries makerbotPLA MakerCon makerfaire makerfarm prusa makerslide makerware makible makibox making money with 3d printing maksim3d Malaysia mandel Manhattan manufacturer manufacturer video manufacturing map marble Mark Meier mark one mark34 market Marlin material materialise math plug-in mathematical object mathematics matsuura matterform Mazak mcor MDF Mebotics media medical applications of 3d printing medicine melamine mendel mendel90 mendelmax mendelmax 2 mesh related grasshopper plug-ins mesh related rhino plug-ins mesh repair for 3D printing meshes meshes in grasshopper meshes in rhino MeshUp metal 3d printing metal casting metal clay metal extruder metal filament metal hot end micro Microfactory microrax microscope microsoft MIG milestone military milkrap mill Milling mind interface mini cnc router miniFactory Mirror Image On / Off MIT mix MkMrA2 MkMrA2 shop mobile mobile 3d print control mobile factory moddler studios model quality modeling carving modification modillion carve modillion cnc router modillion engrave modillion engraving modillion machine modular mojo 3d printer mold molds molecule moon morgan mori motion motor motorola MRI mrrf MTU mug muli color multi color multi jet fusion multi materials multimod multiple guitar stands MULTIPLE REPETITIVE CYCLE Multiple Thread Cutting Cycle multitool museum music n nano nanobots nanoparticles NASA natural machines nature nerf gun nesting Netherlands new diy 3d printer new valence robotics new york newel post produce news newzealand cnc router nfc ninjaflex noisebridge nokia non cartesian Norway nozzle number cutting NV nyc nylon object Objet Objet Connex 500 octo extruder off topic office sign Offset Okuma Onsrud 5-axis router open sls open source open source 3d printer open source hardware openRail OpenSCAD optics optomec ordsolutions organic organic printing organovo orion ornament ornithopter os OS X otherfab othermachine othermill outdoor outdoor advertising p2p pandabot Panel Keys paper paper cut parametric parametric object by function parc Part Program partitioning partners past paste patent pbs pc pcb pcb milling Peck Drilling Cycle PEEK pellet pen people personal pet pet+ pets phantom desktop philips phoenix phone photo Photoformance photography photoshop pick and place pico piracy piratebay pirx PLA pla/pha plane components in grasshopper plant plasma cutter plastic mold plastic welding plasticine Plastics Plastics Overview play-doh plexy plotter plywood pocket poland polar polishing polyamide polycarbonate polyjet polypropylene polystyrene shaping polyurethane pongsat pop culture popfab porcelain poro-lay portabee portable 3d printer portable device portrait portrait sculpt portugal powder 3d printing power power supply precission cutter presentation preview price princeton print bed printhead Printrbot printrbot jr printxel problem problemsolving process products Profile turning Programmed Data Setting G10 project biped projet promotion prosthetic prosumer protoforge prototype prusa prusa i4 Publishing and Printing pump purse puzzle pva pvc pipes pwdr pypy python qr qu-bd quad extruder quadcopter quantum ord bot r360 Ra Ra radiant radio rail RAMBo RAMBo 1.2 ramps rapide raspberry pi re3d Recap recording Recreus recycling reddit relief sculpture repair repetier replacement part replacement parts replicator replicator2 reprap reprap wally reprappro repstrap resin retraction retro review RFID Rhino rhino math Rhino math plug-in Rhino meshes Rhino Nesting Grasshopper Sectioning Layout Rhino Python Rhino Python Scripting Rhino Python User Interface Rhino UI Rhino Unroll Rhino UnrollSrf Rhinoscript Rhombic Triacontahedron Fabrication; CNC Woodworking; 5-axis CNC richrap rings risk robo 3d robohand robot Robot Motion Study Robot Programming setup Robotic Digital Fabrication Robotic Light Paint Robotic Light Painting Robotic Motion Analysis robotic painting with light robots robox rocket rocking horse carved by hand ROFI rolls royce rostock rostock max rotary Rotating Model Stand Rotite rotomaak router rubber rubber band ruled surfaces russia safety sailplane Sainsmart sale samsung sand sand casting sander Sandvik Sanjay Mortimer satellite SAV scam scara school sciaky science screw sculpteo Sculpture Pedestals sea sectioning security sedgwick seed seemecnc selective laser sintering self assembly. sense sensor sensprout service servo setup KUKA|prc tutorial seuffer sf shandong laser Shapeoko shapeshop shapeways shapeways 3d printing sharing ship shoes shop Shop Built Side Table sieg siemens sign sign cut sign laser machine signage signature signing silicon silicone silk silver simpson Singapore single arm 3d printer singularity sintering Six-N-Sticks Skanect skimmer skull skylar tibbids sla slashdot slate slic3r slicer slip casting Slip Casting 3D Printed Objects slotted Slovenia sls smartphone smartrap Smoothieboard smoothing sneakey snowflake soapstone software soild concepts solar solder solid concepts solidator solidoodle solidoodle 2 solidoodle 4 solidus labs solution sony sound south africa space spaceX Spain spark speakers Spectrometer speed spider spin casting Spindle spoolhead sport spray 3d printing square carved rosettes Stack Lamination stair machine stair parts stair parts equipment stair parts processing stairparts machine Stamps School of Art & Design stanford star trek startups steampunk steel stepper stereolithography steve purdham stone stone carving store stratasys strength strong stuck students styrofoam block shaping styrofoam shaping subdivision mesh SubProgram success story sugar sugru suitcase sun Super Matter Tools support material surface surgery suspended deposition sweden swisspen Switzerland syringe table numbers cutting tablet tabletop tactile taiwan talk tangibot tantillus Tapping Cycle tattoo Taubman Colledge Taubman College Taubman college Agilus Workcell Taubman College FabLab taz 2 taz 3 taz 4 TED ted talks telescope temperature temperature measurement test testing textile the pirate bay theta thingiverse Thread threeform tiertime TIG tiger maple Tips Tips and Techniques titanium tool tool chain Tool Data Tool Nose Radius Compensation tools torrent Torus Knot Torus Knot Table touch touch x toy toyota TPE Transverse Cut-Off Cycle G75 trident trinitylabs trinityone trinket tu wien Turning turpentine tutorial tv Twist Table two color 3d printing type a machines Types of Plastic uav uformia UK ultem 2300 UltiController ultimaker ultimaker 2 ultimaker 3 ultrasonic unboxing university university of sauthampton unrolling up mini up plus 2 upgrade urethane USA usb user interface using a router to produce a ZBrush model using china cnc router uv 3d printing v-slot vader vapor velleman veterinary video vietnam viki lcd virtual reality virus visualization volumental voronator voronoi meshes voxeljet VR Vulture 2 vw Wallace Detroit Guitars wally Walnut Table wanhao warping wasp wasp 3d printer waste watch water water cooling wax way finding sign WCC CNC WCC NCT weapon wearable weaverbird web web app web interface wedding sign cutting wedding sign decoration cutting weistek Welding West Huron Sculptors what cnc router can do whiteant wideboy wifi wikiwep wind generator windows windows 8.1 Windows Keyboard Shortcuts windows mobile phone wire wire bender wired wireless 3d printing wobbleworks wood wood carving wood engraving wood frame 3d printer Wood Information Wood Joint Fabrication wood portrait Wood Species woodworking workflow working with planes in kuka|prc workspace x winder xeed xmass xt xyzprinting yale yeggi youth z axis zach hoeken ZBrush Basics ZBrush Decimation Master ZBrush Figure Sculpture ZBrush for Rhino users ZBrush Import and Export to and from Rhino ZBrush Portrait Sculpting ZBrush sculpting tutorial ZBrush Shaders Test ZBrush ZRemesher zeus zmorph zortrax китайский фрезерный станок с чпу фрезерный станок с чпу