Orbital Composites is a company which developed advanced carbon fiber and wire 3d printing with applications in space additive manufacturing. It should enable future missions to 3d print satellites and objects in orbit or to 3d print drones with carbon fiber structures.
Here is the interview with Orbital Composites Founder and CEO Cole Nielsen and presentation of their tech:
Planetary Resources is one of the companies who want to mine asteroids for metals and work in the asteroid belt. They will need to work with materials they find there to produce machinery and structures in space.
To develop this technology they have partnered up with 3D Systems to produce a 3d printed metal part with materials for an actual asteroid that hit the Earth. The asteroid (or meteorite) used for the print materials was sourced from the Campo Del Cielo impact near Argentina, and is composed of iron, nickel and cobalt. The machine used to print it was the new 3d Systems ProX DMP 320.
As you can see the object has complex geometry and is simillar to support structures used in satellites.
Here is a detailed video about manufacturing in space and asteroid mining technology:
You can watch an interview with Chris Lewicki, president and CEO of Planetary Resources here:
Here is a great contest for all you guys interested in 3d printed satellites and space. It has some great awards also.
One of the contest entries.
The contest is organized by Stratasys, MakerBot and GrabCAD.
About This Challenge
The goal of this challenge is to design a small satellite frame optimized for additive manufacturing. By using the benefits of design for additive manufacturing (DFAM) principles:
Mass distributions and materials can be rethought to minimize weight
Part count can be reduced to improve producibility
and ultimately, cost can be reduced.
Awards for TOP 10 places:
1st Place
- $2,500 cash - Your design printed by Stratasys Direct Manufacturing - Makerbot® Replicator® and material pack. - Featured story in Stratasys online communication and use of your design as an example part in Stratasys trade show and conference appearances.
2nd Place
- $1,000 cash - Your design printed by Stratasys Direct Manufacturing - Makerbot® Replicator® and material pack
3rd Place
- $500 cash - Makerbot® Replicator® and material pack.
4th - 10th Place
- $100 cash - Makerbot T-Shirt - 3D Printed Sample Part
Race for space is getting more heated and 3d printed parts are becoming present in every major project from rocket engines to 3d printed satellites. Everyone is competing: big government agencies, private companies, student groups and private citizens. We have even seen 3d printed open source liquid fuel rocket engine. 3D printed rocket engines can be very fast in production and affordable even as low as 500 USD for the open source version printed by external service provider.
SEDS (Students for the Exploration and Development of Space) is well known for their previous successful Tri-D 3d printed rocket motor developments. Now they are crowd-funding further development of bigger Vulcan 1 3d printed rocket engine and launch their Vulcan 1 rocket over 10000 feet.
NASA has developed a full size 3d printed copper engine
NASA successfully laser sintered full scale copper rocket engine.
They write:
“Building the first full-scale, copper rocket part with additive manufacturing is a milestone for aerospace 3-D printing,” said Steve Jurczyk, associate administrator for the Space Technology Mission Directorate at NASA Headquarters in Washington. “Additive manufacturing is one of many technologies we are embracing to help us continue our journey to Mars and even sustain explorers living on the Red Planet.”
Numerous complex parts made of many different materials are assembled to make engines that provide the thrust that powers rockets. Additive manufacturing has the potential to reduce the time and cost of making rocket parts like the copper liner found in rocket combustion chambers where super-cold propellants are mixed and heated to the extreme temperatures needed to send rockets to space.
A selective laser melting machine in Marshall’s Materials and Processing Laboratory fused 8,255 layers of copper powder to make the chamber in 10 days and 18 hours. Before making the liner, materials engineers built several other test parts, characterized the material and created a process for additive manufacturing with copper.
“On the inside of the paper-edge-thin copper liner wall, temperatures soar to over 5,000 degrees Fahrenheit, and we have to keep it from melting by recirculating gases cooled to less than 100 degrees above absolute zero on the other side of the wall,” said Chris Singer, director of the Engineering Directorate at NASA’s Marshall Space Flight Center in Huntsville, Alabama, where the copper rocket engine liner was manufactured. “To circulate the gas, the combustion chamber liner has more than 200 intricate channels built between the inner and outer liner wall. Making these tiny passages with complex internal geometries challenged our additive manufacturing team.”
“Copper is extremely good at conducting heat,” explained Zach Jones, the materials engineer who led the manufacturing at Marshall. “That’s why copper is an ideal material for lining an engine combustion chamber and for other parts as well, but this property makes the additive manufacturing of copper challenging because the laser has difficulty continuously melting the copper powder.”
Rocket Lab is a private company that wants to provide cheap satellite rocket launch system for small satellites. Their Electron Launch Vehicle rocket is made with carbon fiber and uses electrically powered 3d printed motor.
Rocket Lab uses Rutherford rocket engine that is almost entirely 3d printed:
Rocket Lab’s flagship engine, the 4,600lbf Rutherford, is a turbo-pumped LOX/RP-1 engine specifically designed for the Electron Launch Vehicle. Rutherford adopts an entirely new electric propulsion cycle, using electric motors to drive its turbopumps, and is the first oxygen/hydrocarbon engine to use 3D printing for all primary components.
Engineers from Institute 41 (part of the China Aerospace Science and industry Corporation) have already successfully tested an engine ignition device that has been created using 3D printing technology.
This is reportedly the first time Chinese engineers tested a 3D printed rocket component, but it seems to be very suitable for the job. Shell structures typically used for the ignition components in rocket engines are very difficult to design and produce, and are very costly and time-consuming to create. Engineers felt themselves bottlenecked, so a team from the ignition technology research laboratory of Institute 41 began incorporating 3D printing into their R&D process.
In collaboration with local manufacturers of 3D printing equipment, these engineers eventually and successfully 3D printed the first set of shells for ignition devices. To ensure these shells met all design requirements, researchers produced hundreds of 3D printed test samples, which were submitted to various extensive testing sequences.
We live in very interesting times... where will you boldly go?
Since I'm getting more involved with communal WiFi mash networks and open source smart city project in my town, I decided to research and make a small knowledge base on 3d printed antennas. This post will be updated as I gather new information.
Basically, there are two main areas of 3d printed antenna development: High-tech industrial and DIY. The main difference is in type of machines and purpose. Industrial 3d printers are very diverse with applications ranging from aerospace to consumer electronics, while DIY printers use mostly FDM and are used in hobby projects, drones, HAM etc.
High-tech industrial and commercial 3D printed antennas
Optomec Aerosol Jet Antenna 3D printing
Optomec is an industry leader and they integrate their antennas in wide variety of products.
Here is the summary from process homepage:
Mobile device antennas including LTE, NFC, GPS, Wifi, WLAN, and BT have been printed using the Aerosol Jet process and independently tested by a leading cell phone component supplier.
Measured antenna performance is comparable to other production methods. The Aerosol Jet printing process is scalable – antennas can be printed on up to 4 cases simultaneously on a single machine. Machine throughput for a typical antenna pattern measuring ~300 mm2 averages 30,000 units per week.
The Aerosol Jet printer lower manufacturing costs for antennas used in mobile devices. The process works with standard injection molded plastics – no special additives or coatings are required. Based on Aerosol Jet technology, the digital process prints conformal antennas using conductive nanoparticle silver inks.
The printing process accurately controls the location, geometry and thickness of the deposit and produces a smooth mirror-like surface finish to insure optimum antenna performance. No plating or environmentally harmful materials are used in the process.
3D Printing antennas on curved surfaces with nanomaterials
From the source:
“Omnidirectional printing of metallic nanoparticle inks offers an attractive alternative for meeting the demanding form factors of 3D electrically small antennas (ESAs),” stated Jennifer A. Lewis, the Hans Thurnauer Professor of Materials Science and Engineering and director of the Frederick Seitz Materials Research Laboratory at Illinois.
Fractal Antenna Systems is a company that has been working for some 20 years in creating specialized antennas for military and civilian sector based on fractal patterns. They recently published that they also use 3d printers to make some designs.
3D PRINTED ELECTROMAGNETIC TRANSMISSION AND ELECTRONIC STRUCTURES FABRICATED ON A SINGLE PLATFORM USING ADVANCED PROCESS INTEGRATION TECHNIQUES PAUL ISAAC DEFFENBAUGH, M.S.E.E. Department of Electrical and Computer Engineering (doctoral dissertation)
Here is an example of large scale prototyping for space industry. Large fuel tanks for satellite deployment were prototyped by RedEye saving lot of money and time.
From source post:
Validation of design In early 2012, Lockheed Martin SSC began looking at ways to improve and add value to their satellite design. The goal was to design a satellite that would make more efficient use of space and increase the satellite’s payload. It would require testing many assembly configurations and producing several simulators and prototypes to validate design changes. One change that needed to be validated was in the satellite’s fuel tanks. Before building the actual fuel tanks for final use, Lockheed would need to test form, fit and function and assembly with tank simulators. Producing test parts with traditional manufacturing methods would not be realistic given the deadline and costs. Machining the larger tank at 6.75’x3.8’x3.8’ and the second tank at 3.8’x3.8’x3.8’ would take over 6 months and around $250,000. The recent advancements in large-scale 3D printing motivated Lockheed to apply Stratasys’ Fused Deposition Modeling (FDM) to the tank simulators. Lockheed Martin is no stranger to 3D printing technology. In fact, they are considered a 3D printing leader for aerospace applications and own several additive manufacturing machines. But this particular application, part size, post processing requirements and project deadline posed a challenge for their in-house capacity. The parts would have to be built in many pieces and bonded together, requiring an army of machines and a team of FDM finishing experts. That’s when they turned to RedEye’s aerospace team.
Constructing the tanks Lockheed Martin has partnered with RedEye over the last several years to manufacture parts and often comes to RedEye when size, material or machine capacity limit their in-house additive manufacturing systems. Lockheed knew RedEye would deliver high quality parts on time and offered the engineering thermoplastic and finishing processes required for the form, fit and function tests. “We chose RedEye because they have the machines and finishing capabilities to build tanks of this size,” said Andrew Bushell, senior manufacturing engineer at Lockheed Martin SSC. “We also decided to go with RedEye for their speed and engineering support we had received on past projects.” When the RedEye’s aerospace team received design files from Lockheed’s engineers, they were stunned with the size of the tanks. “These are the largest parts we’ve ever built using FDM,” said Joel Smith, the strategic account manager for aerospace and defense at RedEye. The project required many preliminary meetings between Lockheed and the RedEye team as it was the first time building a design of this magnitude. “We completed an extensive design review to determine the best orientation and slice height to ensure we could accurately build and bond the sections together in post processing and meet Lockheed’s dimensional requirements,” said Smith. RedEye landed on building the larger tank in 10 sections and the smaller tank in 6 sections in polycarbonate (PC) on the Fortus 900mcs. RedEye and Lockheed had to adapt and make adjustments to the plan along the way to meet tolerances. “We decided to alter the orientation of the exterior clocking rings that go around the tanks and increase their wall thicknesses to support inserts,” said Trevor Stolhanske, aerospace and defense project engineer at RedEye. Each section of the tanks took 150 hours to build, but even so, RedEye was able to build multiple sections at once, maximizing lead times and controlling costs. After all of the sections were complete, the support material was washed away and the sections were sent to finishing services for bonding. Because of their round shape and weight, the only way RedEye could successfully bond the tanks was to build customized fixtures to hold the sections while fusing pieces together. After several hours of welding each section together, RedEye sanded the tank seams and surfaces. After finishing, the tanks and rings were sent to Hutchinson Manufacturing, Inc. to be machined to the design’s critical dimensions. When RedEye received the tanks from Hutchinson, they added brass inserts to the rings and assembled the tanks per Lockheed’s specifications.
Final assembly “These tanks were built in a fraction of the time it would have taken with traditional manufacturing methods. Even with the machining process and design changes made along the way, we were able to deliver these parts ahead of schedule” said Smith. The tanks went through a number of quality assurance and accuracy measurements and were approved for the first concept assembly. Lockheed Martin’s Space Systems Company performed form, fit and function testing as well as process development, in order to validate the proposed design changes. Next, Lockheed will take what they learned from the first phase and use the information to optimize the design and assembly to print the second iteration of tanks.
I'v blogged about 3d printed satellites HERE before, but PongSats are new project I found. Basically they are launching ping-pong ball sized nano satellites to the edge of space with helium balloons.
There were some articles floating around on 3d printing satellites but they lacked in many details, so I compiled some material on current state-of-play in the field. This post will be continuously updated with new developments.
Most of the 3d printing is related to Cubesat satellites. They are small (10X10X10 cm) picosatellites that are launched as auxiliary cargo on regular big scale launches.
3d printing is used in design / development phase or for printing working satellites support structure.
This study has found that a CubeSat can be developed to successfully incorporate the use of 3D printing manufacturing techniques into its design. This technology provides a potential cost savings of thousands of dollars, even for structures that would be simple to machine. Additional cost savings would be seen for very complex structures that would require advanced machining technology such as Electrical Discharge Machining to produce with aluminum. Using a Tyvak Nanosatellite Systems Intrepid system board at a cost of $3195 for the satellite avionics, it is conceivable that all the flight hardware for a CubeSat with a 3D printed structure could be procured for less than $5000. Not only do these materials provide the necessary strength to survive the rigorous testing and launch environments at a lower cost than machined aluminum, but they allow developers to be more creative with their satellites. Without any limitations from machinability, parts can be produced as they are imagined and new levels of optimization and functionality can be achieved. Further, extremely complex shapes, and even working mechanisms can be produced with 3D printing processes that cannot be manufactured with conventional machining. This allows designers create parts that require no post processing or assembly, streamlining the entire production process.
The university of Texas at El Paso’s W. M. Keck Center for 3D Innovation made advancements in 3d printed satellite sensors for their Trailblazer cubesat project (link).
Students of Montana State University plan to launch their amateur radio satellite PrintSat with nano carbon impregnated plastic by using a 3D printer.
Looks like the future of space exploration is 3d printed. :-)
Let me know if there are some other interesting projects in this area.
Update (12.5.2014.):
KySat2 Cubsat was developed and launched with 3d printed parts.
RedEye (a Stratasys company) in cooperation with JPL 3d printed functional antenna array for a satellite.
From the source:
Due to COSMIC-1’s success, U.S. agencies and Taiwan have been working on a follow-up project called FORMOSAT-7/COSMIC-2 that will launch six satellites into orbit in late 2016 and another six in 2018. NASA’s Jet Propulsion Laboratory (JPL) has developed satellite technology to capture a revolutionary amount of radio occultation data from GPS and GLONASS that will benefit weather prediction models and research for years to come.
COSMIC-2 design and development began in 2011 at JPL. Critical components of the COSMIC-2 design are the actively steered, multi-beam, high gain phased antenna arrays capable of receiving the radio occultation soundings from space. The amount of science the COSMIC-2 can deliver is dependent on the custom antenna arrays. Traditionally, only large projects could afford custom antennas. COSMIC-2 was a medium size project that required 30 antennas so minimizing manufacturing costs and assembly time was essential.
A standard antenna array support design is traditionally machined out of astroquartz, an advanced composite material certified for outer space. The team knew building custom antenna arrays out of astroquartz would be time consuming and expensive because of overall manufacturing process costs (vacuum forming over a custom mold) and lack of adjustability (copper sheets are permanently glued between layers of astroquartz). The custom antenna design also contained complex geometries that would be difficult to machine and require multiple manufacturing, assembly and secondary operations, causing launch delays. JPL decided to turn to additive manufacturing technology to prototype and produce the antenna arrays.
The manufacturing chosen to build accurate, lightweight parts while maintaining the strength and load requirements for launch conditions was Stratasys’ Fused Deposition Modeling (FDM). FDM could produce this complete structure as a single, ready-for-assembly piece. This would enable quick production of several prototypes for functional testing and the flight models for final spacecraft integration all at a low cost. FDM can also build in ULTEM 9085, a high strength engineering-grade thermoplastic, which has excellent radio frequency and structural properties, high temperature and chemical resistance and could be qualified for spaceflight.
Instead of purchasing an FDM machine to produce the parts internally, JPL turned to RedEye, one of Stratasys’ additive manufacturing service centers with the largest FDM capacity in the world and project engineering experts who have experience with the aerospace industry and its requirements.
The antenna array support structures were optimized and patented for the FDM process. All shapes were designed with an “overhead angle” of 45 degrees at most to avoid using break-away ULTEM support material during the build. “Designing the antennas with self-supporting angles helped with two things,” said Trevor Stolhanske, aerospace and defense project engineer at RedEye, “it reduced machine run time so that parts printed faster, and reduced the risk of breaking any parts during manual support removal.” JPL was also able to combine multiple components into one part, which minimized technician assembly and dimensions verification time and costs.
Although FDM ULTEM 9085 has been tested for in-flight components, it had never been used on the exterior of an aircraft, let alone in space. Therefore, in addition to standard functional testing (i.e. antenna beam pattern, efficiency, and impedance match), FDM ULTEM 9085 and the parts had to go through further testing in order to meet NASA class B/B1 flight hardware requirements.
Some of these tests included:
Susceptibility to UV radiation
Susceptibility to atomic oxygen
Outgassing (CVCM index was measured to be 0 percent)
Thermal properties tests – in particular, compatibility with aluminum panels. (Aluminum has a slightly different coefficient of thermal expansion than non-glass-filled ULTEM)
Vibration / Acoustic loads standard to the launch rocket
Compatibility with S13G white paint and associated primer
ULTEM 9085’s properties met all required qualification tests, proving the antennas are space-worthy. However, the highly reactive oxygen atoms present at the operating height of the satellite could degrade the plastic. To protect against oxygen atoms and ultraviolet radiation, ULTEM was tested for compatibility and adhesion with some of NASA’s protective, astronautical paints. In this case, S13G high emissivity protective paint was chosen to form a glass-like layer on the plastic structure and reflect a high percentage of solar radiation, optimizing thermal control of the antenna operating conditions.
From March 2012 – April 2013, RedEye produced 30 antenna array structures for form, fit and function testing. Throughout each design revision, RedEye’s project engineering team worked closely with JPL to process their STL files to ensure the parts met exact tolerances and to minimize secondary operations. RedEye’s finishing department deburred the parts where needed, stamped each with an identification number and included a material test coupon. They also reamed holes for fasteners that attach to the aluminum honeycomb panel and the small channels throughout the cones to the precise conducting wire diameter.
“Not only did NASA JPL save time and money by producing these antenna arrays with FDM, they validated the technology and material for the exterior of a spacecraft, paving the way for future flight projects” said Joel Smith, strategic account manager for aerospace and defense at RedEye. “This is a great example of an innovative organization pushing 3D printing to the next level and changing the way things are designed.”
As of 2014, the COSMIC-2 radio occultation antennas and FDM ULTEM 9085 are at NASA Technology Readiness Level 6 (TRL-6). RedEye was able to successfully enter the JPL Approved Supplier List and delivered 30 complete antennas for final testing and integration. The launch of the initial six satellites is scheduled for 2016. Another constellation will launch in 2018. The FORMOSAT-7/COSMIC-2 mission will operate exterior, functional 3D printed parts in space for the first time in history.
Here is a video of phased array antenna being printed:
Here is a picture of a satellite with the antenna being on lower right side of the spacecraft, shaped like a plate with 12 cylinders:
Update (26.1.2015.):
3d printed parts are also used in prototyping and final space going version of French CNES satellite EyeSat. Parts were printed by Sculpteo and parts probably going to space are sunvisor and four fixture elements.
PrintTheBus is the first 3D printed aluminum CubeSat project that aims to get to lunar orbit with citizen experiments! They are competing in NASA's CubeQuest Challenge. Thy also started KS campaign:
Sciaky, major EBAM industrial 3d printer maker announced a partnership with Lockheed Martin to produce titanium propellant tanks for satellites. Because of the welding techniques implemented by the EBAM system, which allows for the size and speeds possible with the technology, intensive post-processing is necessary to bring parts to specification but the benefits are amazing.
Update (22.8.2015.):
Made In Space and NanoRacks want to 3d print cubesats in space.
Update (13.1.2016.): NASA selected Aerojet Rocketdyne to mature 3D printed MPS-130 CubeSat propulsion system. Now we will have 3d printed satellites with 3d printed propulsion systems.
System description:
MPS-130™ CubeSat High-Impulse Adaptable Modular Propulsion System (CHAMPS) is a 1U AF-M315E (low-toxicity propellant) propulsion system that provides both primary propulsion and 3-axis control capabilities in a single package. The system is designed for CubeSat customers needing significant ΔV capabilities including constellation deployment, orbit maintenance, attitude control, momentum management, and de-orbit.
Dimensions: 10 cm x 10 cm x 11.35 cm
Mass: <1.3 kg Dry, <1.6 kg Wet
Operational Temperature Range: +5°C to +50°C
Command Method: Digital or Discreet Analog 5V
Power Consumption: <TBD W Startup, <TBD W Operation
Operational Voltage: 5 V Nominal
BOL Thrust: TBD N (high thrust) to TBD N (low thrust) per thruster
Minimum Impulse Bit (at blowdown-averaged feed pressure): TBD to TBD N-sec per thruster
NASA will use a 3d printed bracket on their ICESat-2 made from Stratasys Polyetherketoneketone (PEKK). PEKK is a new material that can be used in space since it is resistant to extreme environments and electrostatically dissipative, preventing the static electricity build-up to protect sensitive electronics. The Ice, Cloud, and land Elevation Satellite-2 satellite will be launched in 2018.
Update (05.03.2016.): Made In Space, a company known for first NASA space-based 3d printer wants to 3d print satellite parts in orbit with their Archinaut technology.
ESA is testing 3d printed antenna for future space applications. It is copper plated with a special process.
From the source:
A prototype 3D-printed antenna being put to work in ESA’s Compact Antenna Test Facility, a shielded chamber for antenna and radio-frequency testing. “This is the Agency’s first 3D-printed dual-reflector antenna,” explains engineer Maarten van der Vorst, who designed it. “Incorporating a corrugated feedhorn and two reflectors, it has been printed all-in-one in a polymer, then plated with copper to meet its radio-frequency (RF) performance requirements. “Designed for future mega-constellation small satellite platforms, it would need further qualification to make it suitable for real space missions, but at this stage we’re most interested in the consequences on RF performance of the low-cost 3D-printing process.” “Although the surface finish is rougher than for a traditionally manufactured antenna, we’re very happy with the resulting performance,” says antenna test engineer Luis Rolo. “We have a very good agreement between the measurements and the simulations. Making a simulation based on a complete 3D model of the antenna leads to a significant increase in its accuracy. “By using this same model to 3D print it in a single piece, any source of assembly misalignments and errors are removed, enabling such excellent results.” Two different antennas were produced by Swiss company SWISSto12, employing a special copper-plating technique to coat the complex shapes. “As a next step, we aim at more complex geometries and target higher frequencies,” adds Maarten, a member of ESA’s Electromagnetics & Space Environment Division. “And eventually we want to build space-qualified RF components for Earth observation and science instruments.” Based at ESA’s ESTEC technical centre in Noordwijk, the Netherlands, the test range is isolated from outside electromagnetic radiation while its inside walls are covered with ‘anechoic’ foam to absorb radio signals, simulating infinite space.
Update (15.04.2016.): Tomsk Polytechnic University from Russia developed and 3d printed the hull of the micro-satellite "Tomsk-TPU-120" which will be deployed in space.
From the source:
Somewhere aboard Russia’s space vehicle Progress MS-02, among the 2.5 tonnes of cargo, is the 3D printed Tomsk-TPU-120 microsatellite, which was designed and manufactured by the Tomsk Polytechnic University. The cargo ship has just successfully separated from the Soyuz-2.1a space rocket, and is making its way to the ISS astronauts. The microsatellite is equipped with a 3D printed hull, while most of the other satellite parts and components were 3D printed in plastic material as well. The microsatellite, which measures just about 300 x 100 x 100 mm in size, also contains an electric battery unit, which reportedly has made use of 3D printing with zirconium for the first time ever. The microsatellite will also contain a number of sensors, which will record temperature fluctuation data from the satellite, as well as how its components function during these fluctuations, and send the data back down to Earth to help us better understand manufacturing for conditions in outer space.
Thales Alenia Space and Poly-Shape SAS have built Europe’s largest qualified 3D printed metal parts for satellites using a Concept Laser 3D printer which measure a 447 x 204.5 x 391 mm but weigh just 1.13 kg. The laser-sintered antenna supports, which took six days to print from AISi7Mg alloy, will be used on the Koreasat-5A and 7 satellites, due to go to into orbit in 2017. It is 20% lighter and 30% cheaper to manufacture compared to the standard process.
Space Systems Loral announced March 7 that its most complex additively manufactured part, an antenna tower with 37 printed titanium nodes and more than 80 graphite struts, is performing as intended in orbit on SKY Perfect JSAT’s JCSAT-110A satellite launched in December. “Our advanced antenna tower structures enable us to build high-performance satellites that would not be possible without tools such as 3D printing,” Matteo Genna, chief technology officer and vice president of product strategy and development at SSL, said in SSL’s announcement. SSL is now using the same strut-truss design methodology on other satellites it is building. That includes 13 structures SSL is designing and manufacturing. SSL is putting hundreds of 3D printed titanium structural components on its satellites per year, according to the firm’s announcement.
Australia has first satellites in space after 15 years and they are cubesats made with 3d printed thermoplastic structure. UNSW-EC0 was deployed from the ISS from a Nanoracks launcher, a "cannon" that eject cubesats at a height of 380 km (the same as the ISS), allowing them to drift down to a lower orbit where they can begin their thermosphere measurements.
Here is a nice example how LibreCAD and 3d printing were used in the development of cubesat that uses open source technologies. UPSat was successfully deployed in space.