Renault Trucks Shows us the Future of 3D Printed Engines

Renault Trucks shows how industrial 3d printing could drastically reduce weight and number of parts needed for a modern internal combustion engine. The weight is reduced by 120 kg and the number of parts is reduced by 200. This could lead to lower fuel consumption, cheaper engines and simpler replacement parts chain.





Company website:

http://www.renault-trucks.com/

Ruled and Developable Surfaces and Forms for Fabrication


This post discusses ruled and developable surfaces and their use in digital fabrication. It defines the terms, discusses the generation and layout of parts, and methods of assembly to combine back into 3D form. It also shows methods of analyzing forms to determine if they are ruled and developable.

If you'd like to examine and experiment with the surfaces shown below you can download the Rhino file here.

Ruled Surfaces

A ruled surface is generated by sweeping a straight line through space. For every point on a ruled surface there is at least one straight line which lies on the surface. Examples are cylinders, lofts between two rotated circles, curves extruded along a straight line, or straight lines swept along a curve.

Doubly-Ruled Surfaces

A surface is doubly ruled if for every point on the surface there are two different lines that lie on the surface. An example of this is a hyperboloid, shown below. One of these can be generated by simply lofting two circles which have start points (curve seams) which are not aligned but rather are rotated relative to one another.

The loft is hyperbolic - saddle shaped - doubly curved in different directions:

The curvature circles (Rhino Curvature command) show the principal curvature at any point. Here you can see the circles curve in opposite directions. A later section of this post discusses the use of the Curvature command in more detail. 

Here you can see the two straight lines for every point:


Developable Surfaces

A special type of ruled surface is said to be developable. A developable surface can be unrolled onto a flat plane without tearing or stretching it. That is no distortion will be introduced when it is laid flat on the plane.

The Rhino command UnrollSrf is used to flatten a surface or polysurface with curvature in one direction onto a plane. In the image below you can see an unrolled cylinder, cone, truncated cone and extrusion. In these simple cases I think it's easy to visualize how those surfaces can be unrolled.

Some examples of ruled, developable surfaces are cylinders, cones, truncated cones, and curved shapes that are extruded along a straight line.


Curvature of Surfaces 

Principal Curvatures

The Curvature command shows the Principal Curvature for a surface. The principal curvatures measure the maximum and minimum bending of a surface at each point.

When the principal curvatures are positive that means they curvature is in the same direction (both positive or both negative). This means the curvature is bowl-shaped.

When the principal curvatures are in opposite directions (one positive and one negative) the result is a negative value as below. This means the surface is saddle-shaped.

When the principal curvatures are zero it means the surface is flat in one direction.

The principal curvatures are used to compute the Gaussian and Mean curvatures of the surface.

Gaussian Curvature

The Gaussian curvature of a surface at a point is the product of the principal curvatures at that point. The tangent plane of any point with positive Gaussian curvature touches the surface at a single point, whereas the tangent plane of any point with negative Gaussian curvature cuts the surface.

Positive Gaussian Curvature: A positive Gaussian curvature value means the surface is bowl-like. This surface is synclastic.


Negative Gaussian Curvature: A negative value means the surface is saddle-like. This type of surface is referred to as anticlastic.

Zero Gaussian Curvature: A zero value means the surface is flat in at least one direction. (Planes, cylinders, and cones have zero Gaussian curvature).

Curvature Terminology Summary

Below is a summary of the terminology used above:
  • Principal Curvature: The maximum and minimum curvature at a point on the surface. 
  • Gaussian Curvature: The product of the principal curvature values at a point. 
  • Synclastic Surface: A synclastic surface is one where the Gaussian curvature is positive everywhere. A point at which the Gaussian curvature is positive is called an elliptic point.
  • Anticlastic Surface: An anticlastic surface is one where the Gaussian curvature is negative everywhere. The surface is saddle shaped. 
  • Developable Surface: A developable surface is a surface with zero Gaussian curvature. That is, it is a "surface" that can be flattened onto a plane without distortion (i.e. "stretching" or "compressing").

Rhino Commands and Grasshopper Components for Creating Ruled Surfaces

There are many ways to create ruled surfaces in Rhino. The key is using straight lines as input to the commands. Here are a few examples:

Some of these commands are discussed below:
  • ExtrudeCrvToPoint: This command will generate conical forms which are ruled. It works because the curve is extruded up to a single point. Thus there's always a straight line from the curve to that point, and thus the surface is ruled. 
  • Sweep1: This command will generate a surface by moving a curve along a rail curve. If either of the curves is a straight line the surface will be ruled. 
  • Sweep2: A surface is generated by moving a curve between 2 rails. If the rails are straight lines, or the contour curves are, the surface will be ruled. 
  • Loft: When you loft between two curves you can generate a ruled surface. 
  • EdgeSrf: This command will generate a surface between 2, 3 or 4 open curves. If the input edges are straight lines a ruled surface results. 

UnRolling for Fabrication

It's a common practice to want to unroll forms, cut them from sheet material, then re-assemble them back into a 3D object. One method of doing this involves tabbing the edges of the surfaces.

The Rhino Polyhedra plug-in allows you to create an amazing variety of polyhedra. Those that can be generated as solids have planar faces. They can therefore be unrolled using the UnrollSrf command.

It is possible to take surfaces which aren't developable and make an approximation of them which are developable. Here's an example - a sphere - clearly not developable:

Un-Folding Mesh Forms

Meshes are composed of quads and triangles. These meshes can be unrolled. A free program to do this is Pepakura Designer. It takes 3D mesh models and will let you designate the seams where the model splits apart to unroll flat. It will also generate the tabs so you can secure them back together. This is a remarkable, easy to use program well worth checking out.

Here's an example of a Rhino Polyhedra, exported as a meshed OBJ, then loaded and unrolled in Pepakura.

Using the free version you can export the result to a PDF file (which will have the graphics in a vector format). You can then import the PDF into Rhino and modify the layers, linetypes, scale, etc. to get it ready for cutting out). 

If you purchase a commercial version of Pepakura you can export directly.

Programatically Unrolling

The UnrollSrf command can be used by a Python script or Grasshopper definition to unroll as part of a program.

A handy way to assemble unrolled forms is by tabbing the edges of the unrolled surfaces. These tabs can be made to interlock so the cut pieces can be reassembled. In this example a Grasshopper definition was used to generate a 3D form by sweeping a curve along a polygon rail. The rail is a triangle and thus the straight edges make a ruled, developable surface. The definition generates tabs along the edges.

The parts are cut on a CNC knife cutter. In this case several forms were cut from the same sheet of material - 0.03" thick PETG plastic.

The tabs lock the parts together and also ensure that the curvature remains true to the original form.

Here are the cut parts, with the plastic overlay removed, assembled by interlocking the tabs:
  

Hot Wire Cutting of Ruled Surfaces

Another application for ruled surface geometry is driving a robot with a hot wire cutter. The heated wire vaporizes the foam as it slowly moves through it. Because the wire is a straight line the resulting surfaces are inherently ruled.

Since we create the surfaces to drive the robot we do so by developing ruled surfaces in Rhino.

See this post - Hot Wire Foam Cutting Using the Robot - for an example of hot wire cutting a variety of ruled surfaces in expanded polystyrene foam with the robot.

LulzBot TAZ MOARstruder for Heavy-duty 3D Printing

For those demanding high-volume jobs on big objects LulzBot has released their MOARstruder extruder.
It is priced at 395 USD.


From produce description:
Bigger. Faster. Stronger. MOAR: The LulzBot TAZ MOARstruder Tool Head is a high output tool head with an extra-long heater block, dual print cooling fans, and a 1.2 mm diameter nozzle. These features enable high-speed printing and tough 3D printed objects.

Here is the video presentation:



MOARstruder homepage:

https://www.lulzbot.com/store/tool-heads/lulzbot-taz-moarstruder-tool-head


Everything you need to know about copyright and intellectual property in context of 3d printing in one simple video

Thomas has another great video where he clarifies issues of copyright, intellectual property, patent and open source in context of 3d printing. It's a must-watch if you are interested in 3d printing on more professional level.


DIY Gauss Meter with 3D Printed Enclosure

Anthony aka. "Proto G" published this Instructable where he made a useful DIY Gauss meter which is controlled with Arduino Nano. 

Project description:
In this instructable, I will show you how to make a Gauss meter than can measure the strength of magnets so you can compare different magnets you have. It measures the magnets in units called Gauss and has a relatively linear range from 0-4000 Gauss. It will measure beyond that but the numbers beyond 4000 Gauss should only be used for comparison purposes. In addition to measuring the field strength, it also detects the polarity of the magnet and will show North or South, respectively. My favorite part about this design is the ON/OFF switch. It's hidden in the enclosure so the meter can only be turned on and off with a magnet. Since this unit is meant to measure magnets, you're sure to have one on hand. You can use the same latching magnetic switch I designed for many other things like a secret compartment lock. Here's a video showing the complete assembly:




You can see the full construction manual at:

http://www.instructables.com/id/Dual-Sensor-Gauss-Meter/



Robotic Painting with a Line of Lights

This post documents a method of generating light paintings using a robot moving a linear array of lights through space. The robot moves a simple stick tool which contains 60 lights stretched along its 1 meter length. Each light can be individually controlled, any one of 16 million colors, and that color can vary over time.

The image is recorded using a camera which keeps the shutter open during the entire motion of the robot. Everything happens in a very dark room so the great majority of the light collected comes from the lights only. The result is a single image showing the entire path of the line of lights.





Grasshopper Definition

The robot motion is controlled by a simple Grasshopper definition using the plug-in Kuka|prc. The motion is driven by an input curve and a few parameters described below.

There are two parts to the definition. One simulates and generates the robot code. You work with this part of the definition to assure that the robot can reach the entire curve without hitting joint rotation limits and that the tool does not collide with the robot table.

The other part of the definition is used to simulate the light effect prior to running on the robot. This is important because it is impossible to visualize the path of the lights as they rotate traveling along the input curve.

See the post Working with Planes in Kuka | prc for information on various methods of dividing curves and driving the robot.

Parameters

The adjustable parameters are as follows:
  • Curve: The curve the robot follows. The robot face plate and tool rotate so the line of lights is always perpendicular to the curve at every point. It's this twisting motion of the line which generates the visual interest. 
  • Curve Divisions: The entire length of the curve is divided into the specified number of segments. By varying this parameter you can get a great variety of outputs. In general, the most interesting results are obtained using low values. 
  • Tool Length: This is fixed for the Taubman College tool which is 1 Meter long. 
  • Lights on Tool: To simulate accurately you need to tell Grasshopper how many lights will be illuminated on the stick. This can be either 15, 30 or 60. The actual number of lights used is set on the tool itself. 


The Curve obviously has a major impact. But it's surprising that using different curves with low division counts you can get some amazing effects. Here are a few sample curves drawn in Rhino:

It's of course also possible to wire in a parametric curve generated by Grasshopper.

The strip of LEDs has 60 lights per meter which is the length of the stick. The Arduino code allows you to set the number of LEDs which are illuminated. By using every every 1/12th you can have 5 lights show along the length. Using 1/4th you can have 15 as shown below:



Every other LED produces 30 and every LED is 60:
 

Here's are examples using the same curve with a different division count:

Here's a different curve with two different division counts:
 

The End Effector

The tool attached to the robot is basically a stick made of 1/2" Baltic Birch plywood. There's a small box to house the electronics. Milled into the stick are some grooves for the light strip and the wires.

The lights are NeoPixel strips made by Adafruit. Everything is driven by an Arduino.
There are a few simple controls - two push buttons, and three knobs:

Here's a video demo of the controls (description below):


Push-Button 1

Use this to change between the 5 different light effects. Press the button to change to the next mode - the sequence is as follows:
  1. Constant color for all lights - same over time. Use Knob 1 to set the fixed color. 
  2. Unique color for all lights - same over time. Use Knob 1 to shift the colors along the line of lights. 
  3. Unique color for all lights - rotates along the strip over time. Use Knob 1 to shift the colors along the lights. Use Knob 2 to set the rate of change. 
  4. Random colors for all lights - same over time. 
  5. Random colors for all lights, rotates along the strip over time. Use Knob 2 to set the rate of change. 

Push-Button 2

Use this to control the number of lights which are illuminated on the stick. As you press the button the number of lights lit will switch as follows:
  • 5 LEDs 
  • 15 LEDs 
  • 30 LEDs 
  • 60 LEDs

Knob 1

Changes the color of each light. Rotating the knob moves the lights through hue space. All the way counter-clockwise is 0, fully clockwise is 360, where:

0=Red, 60=Yellow, 120=Green, 180=Cyan, 240=Blue, 300=Magenta, 360=0=Red.

How the change effects each light depends on push button 1 (see above).

Knob 2

Use this to change the intensity (brightness) of the lights. All the way to the left is dimmest, all the way to the right - don sunglasses.

Knob 3

Use this knob to specify the rate of change of the light colors over time. Slowest is all the way counter-clockwise. Fastest is fully clockwise.

The Robot

These examples were generated on a small Kuka Agilus robot. Like all robots it has a limited reach and range of motion. There are a few controls in Grasshopper you can use to allow the robot to reach every point on the curve.

Initial Position: This is key. You need to pose the robot in a neutral position for the start of the motion. None of the joints should be near their limits and it should be roughly centered on your path. You set this in the Kuka | prc Settings, on the Advanced Page.

Middle Point Location: This is the most important tool for solving joint limit problems. If you encounter a position in the path where a joint turns red, leave the simulation slider where that joint is red, and move the middle point location a bit. Usually you can find a spot where the joint is no longer in a limit. This can be up or down, or closer or farther from the robot. Note: There are curves which are impossible to fully reach. But if your curves are not larger than the samples provided you'll probably be able to find a position which works.

Arduino Hardware and Software Details

This section describes the wiring and software setup.

Below is the prototype I built using components I had on hand to test with. A slide potentiometer for the hue selection, a cheap pot for knob 2, one nice push button and one piece of junk. These were replaced with better components in the final tool.

The NeoPixels need current. 60 pixels at full brightness need almost 4 amps. An Arduino supplies only 0.5 amps as does a 9V battery. So an external power supply is necessary. This is the one I prefer: 5V 4A (4000mA) switching power supply.

The color is computed in Hue space but needs to be provided to the LEDs as RGB values. I used some great code I found online to do this: Why every LED light should be using HSI colorspace.

The prototype used an Arduino Uno. The final version needed a smaller footprint micro-controller so I used an Arduino Micro.

The face plates are laser cut acrylic. I got the buttons here and the pots here.

My research assistant Celine Schlueter did all the soldering:

Conclusion

The process needs some more development but I like the initial tests of this new tool.

For some other image painting tests see this post.

Update

I've done more work on this project. The results are here: More Robot Driven Light Paintings

RooBee One Open Source DLP SLA 3D Printer

Aldric Negrier developed this DLP projector based open sourced 3d printer. It looks easy to assemble and cheap to make. It all depends on how cheap can you find a suitable projector. 

Project description:
Roobee One is an SLA DLP 3D printer inspired on the Cristelia - SLA/LCD 3d printer and the Vulcanus MAX 3D printer.
It is built out of 20x20 mm aluminum profile chassis, It has an adustable print area of 80x60x200 mm up to 150x105x200mm build volume using a ACER DLP projector.
The open-source machine is called RooBee One because it is red color just like a Ruby gem.

RooBee One presentation video:



Detailed build guide can be found at:

http://www.instructables.com/id/RooBee-One-SLA-DLP-Aluminum-Frame-3D-Printer/

Thingiverse page:

http://www.thingiverse.com/thing:2001118

Cristella 3d printer (open source, daylight):

http://www.thingiverse.com/thing:1680172




3D Printed Car Navigation based on Raspberry Pi

Greg Holloway made a car navigation system based on Raspberry Pi and 7 inch screen that is held by 3d printed dashboard structure. It was printed on E3D BigBox machine with the help of SpoolWorks scaffold soluble support material.
The car is Suzuki Jimny. Software used is open source Navit.































Detailed step-by-step construction guide can be found at:

http://www.instructables.com/id/3D-Printed-In-Dash-GPS-Navigation-Raspberry-Pi-3/

Thingiverse page for the files:

https://www.thingiverse.com/thing:1701583

Why Millebot?

Millebot is a large 3d printer that lives inside a shipping container. The idea behind it looks interesting...




... BUT

Why use this strange paste / foam for 3d print? and then mill it afterwards?

Building retainer walls for anything? Are you serious?

The operation will need a LOT of electrical power, material and overall complex logistic support.

Nice try, but I think it still needs a use case and overall technology improvements.

Millebot homepage:

http://www.millebot.com/

Source:

http://makezine.com/2017/01/05/mille-shipping-container-doubles-3d-printer/


Low Cost DIY SLS 3D Printer by Vulcaman

Vulcaman, well known for his previous machines, has released his latest sintering 3d printer you can make for some 500 Euro: the JRLS 1000.
It is still far from commercial machines, but this field is progressing forward and that is the most important thing. Vulcaman is only 18 years old, so we can hope much more from him in the future.
Key features:
  • 5x5x5cm build volume
  • 1.8w 445nm laser
  • 80w 12V heated-bed
  • 150w 230V powder heater with IR-Sensor
  • coater which compresses the powder
  • adjustable Feed control
  • overflow container
  • closed build chamber
  • low cost
Most prints are currently done in instant tea powder which is 95% sugar, but the powder is used because of its red color which will absorb the 450nm laser well. White sugar will not work, because it will just reflect the laser. The laser is focused to 0.2mm. The power of the laser is set to 1W.





























Here is the machine printing:



Detailed build guide and all the files:

http://www.instructables.com/id/JRLS-1000-DIY-SLS-3D-PRINTER/

3D Printable Astrophotography with RasPi Zero

If you are interested in astrophotography and you want to make a low cost DIY setup here is a great project. Greg Holloway developed a Raspberry Pi Zero based wireless camera for a 1.25" telescope eyepiece receptacle with 3d printed casing. It is battery powered so you can take it in the wilderness to observe the stars.





































Full project description, all the files and software can be found at:

http://www.instructables.com/id/Astrophotography-With-the-Raspberry-Pi-Zero/?ALLSTEPS

https://www.thingiverse.com/thing:1892757

He also developed a 3d printable solar filter case:

https://www.thingiverse.com/thing:1904985

How crazy are the Finns?

Well ... besides crushing various thing in a hydraulic press they also use LARGE 3d printers at Prenta to make molds for pykrete stuff. Pykrete ammunition to be more specific.




And then they use that ammo in a BIG air cannon:




I like Finland!


Prenta homepage (largest 3d printing machines in Scandinavia):

http://www.prenta.fi/en/

If you don't know what pykrete is:

https://en.wikipedia.org/wiki/Pykrete


Blackwolf 3D Printer Developed in Croatia

I was surprised when I saw Blackwolf for the first time at a Maker Faire in my regional capitol. Blackwolf is a large 3d printer with full enclosure that is developed in Croatia, city of Sisak.
Hopefully we will get more information about it soon.


Here is Blackwolf working at Osijek Maker Faire:



























Here is a video of printing L 2 model:




You can find more information about this machine at:

Blackwolf Facebook page

CNC CODE

5 axis cnc mill,5 axis cnc router,cad cnc,cc machine,cnc cutter machine,cnc cutting system,cnc definition,cnc equipment manufacturers,cnc fabrication,cnc lathe retrofit,cnc machine accessories,cnc machine automation,cnc machine business,cnc machine companies,cnc machine description,cnc machine maker,cnc machine news,cnc machine repair,cnc machine services,cnc machine shop,cnc machiner,cnc maching,cnc machining companies,cnc machining equipment,cnc machining parts

Labels

"7-Axis Robot" "Digital Fabrication" "Planar Polygons" "Rhino" "Rhinoscript" 2007. 2013 2014 2016 2d printing 2d to 3d 3-axis CNC 3-axis CNC Kit 30c3 3d capture 3d carving 3d cnc router 3d company 3d copy 3d display 3d drawing pen 3d model 3d piracy 3d print farms 3d print platform 3d print quality 3d printed 3d printed airoplane 3d printed airplane 3d printed buildings 3d printed car dashboard 3d printed car part 3d printed car parts 3d printed clothing 3d printed cyborg 3D Printed Figure Sculpture 3d printed food 3D Printed for in Ceramic 3d printed gun 3d printed machines 3d printed music instrument 3d printed music record 3d printed organs 3d printed parts 3D printed relief 3d printed rifle 3d printed robot 3d printed sensors 3d printed skateboard 3d printed toys 3d printed uav 3d printed vehicles 3d printed weapons 3d printer 3d printer accessory 3d printer crime 3d printer desk 3d printer eclosure 3d printer review 3d printer stand 3d printer table 3d printers comparison 3D printing 3d printing filament 3d printing in cement 3d printing materials 3d printing myths 3d printing on battery power 3d printing photographs 3D printing piracy 3D printing portraits 3d printing primer 3d printing systems 3d printing with carbon fiber 3d printing wood 3D printing ZBrush sculpts 3d printshow 3d puzzle 3d scanner 3d sensors 3d shaping cnc router 3d startup 3d systems 3d ui 3dea 3dMonstr 3doodler 3dPrinting 3dprintmi 3dprn 3dr 3dsimo 3ntr 4 Jaw Chuck 4-axis 4-axis CNC 4-axis cnc woodworking 4d printing 4th dimension 5 axis 5 axis cnc router china 5-axis 5-axis CNC 5-Axis CNC woodworking 5-axis router operating procedure 5d print d8 6 axis 7-axis robot 7512 abs abs juice acetal acetone acp cnc router acrylic acrylic board cut machine acrylic cut acrylic cutting activism adafruit Adafruit NeoPixel Strip adapto adobe advanced afinia africa Agilus Workcell Agilus Workcell Tutorial aio robotics air airbus aircraft airwolf3d alabaster aleph objects all-in-one aluhotendv4 aluminatus aluminum Amazon ampersand sign cutting AMRI amsterdam android animal antenna ao-101 app apple appropedia arburg archery Architectural Robotic Fabrication architecture architecutre hollow out. arduino Arduino Micro LED Arduino NeoPixels argentina armour arrow art artec artificial stone arxterra asia asiga astronomy atm australia austria Autodesk automation automotive b3 innovations baboi bacteria baddevices badprinter bag balance baluster process batteries beaglebone beams bebopr bed leveling bee Beer Caddies belgium Belle Kogan ben heck bendable bending bicycle big objects big printers bike biohacking bioprinter bitcoin blacksmith blade blade 1 blender blimp blind blizzident Block Delete blog blokify bluetooth board cut boeing bomb bone book Books boot Boring Cycle bottle bow bowden box bracets braille Bre Pettis bridging bronze brook drumm buccaneer build bukibot bukito bukobot burning man business busybotz buy china cnc router buy cnc router buy cnc router from china buy laser machine buy modillion carving machine buy router cnc bycicle parts cad calibration camera canada Canned Cycle canon car carbomorph carbon carbon fiber cardboard carmine cartesio cartouches carved architecture carving carving machine carving with gouges and rasps case cashier board cut casting Cathy Lewis cb printer ccc cell cellphone cellstruder central overhead elements. centrifuge cerajet ceramic ceramic tiles engraving cerberus CES ces 2012 CES 2013 ces 2014 ces 2015 cff chain maille chair chamber chart chefjet chemistry children china china cnc router china laser machine chipfuzer chocolate choose cnc router chopmeister chopper chris anderson Cincinnati circular platform clay clear figure sculpture clone closed loop cloud cnc CNC 4th axis CNC 5 Axis CNC Box CNC Coordintes CNC Corner Fix CNC cut acrylic figure sculpture CNC Cut Guitars cnc engraving machine. CNC Joints cnc mill CNC Rotary Axis cnc router cnc router aluminium cnc router art work cnc router copper cnc router cut acrylic cnc router factory cnc router foam cnc router importer CNC Router Kit cnc router manufacturer cnc router mdf cnc router modeling and prototyping cnc router mold cnc router packing CNC Router Parts Build CNC Router Parts Rotary Axis cnc router problem cnc router review cnc router type3 cnc router video cnc router work CNC routing file preparation CNC routing ZBrush CNC Tool Holders CNC Tools CNC walnut CNC Wood Joinery cnc wood router CNC Woodworking CNC Woodworking 5-axis Digital Fabrication Taubman College CNC Woodworking Sleigh Bed Digital Fabrication Tabuman College CNC-Woodworking co cody wilson coffee color changing filament colorfabb comic community company tour complex 3d print composite Composite Filament Fabrication concept concrete conductive ink consultancy Consumer Electronics Show contour crafting contouring Control control unit controller cool things to 3d print cooling copyright Corner Fix cosplay cost reduction cottle boards creaform creative commons Credit card fraud crime criminals croatia crowdfunding CT cube cubejet cubesat cubex cubify cubify invent cubify.com cups cura curaengine customized cut cut acrylic cutting cyberpunk Cycloidal Gyro Czech Republic d3d da vinci daily use dart gun data data matching tutorial data tree tutorial. dc motor decimation master deezmaker dell delta delta 3d printer delta forge deltaprintr demonstration denmark dental 3d printing desert design desktop 3d printing desktop cnc router desktop printer desktop production Developable Surfaces dglass 3d Digital Design digital fabrication Digital fabrication of figure sculpture Digital Fabrication Slip Casting digital figure sculpture Digital Portrait Sculpture Digital Sculpting Digital Sculpting Renders Digital Sculpting with Two Models Digital Woodworking dilbert disabled disney Display Conduit diy diy 3d metal printer diy 3d printing diy 3d printing companies diy science dlp dmls documentary double decker 3d printer Doubly Curved Surfaces dremel drill Drilling Cycle drivers DRM drone dual extruder dual extrusion duct tape duo e3d ecology economy edc education eff Egypt ejection electron beam electronics elon musk enclosure encryption energy generation engine Engraved Signs engraver engraving enrico dini environment envisiontec EOS epoxy EPS Foam EPS shaping ESA etching etsy euromold 2011 Euromold 2012 euromold 2013 euromold 2014 europe event eventorbot events evo exoskeleton experiment experimental 3d printing extended platform extruder eye glasses eyewear fabbot fablab fablab berlin fabtotum Face Grooving Cycle Facing Cycle fail fan fantasy figure Fanuc farm fashion Fasteners fdm Feed Rate felix festival fff fiberglass figulo. video Figure Sculpting in ZBrush figure sculpture in acrylic. filabot filaflex filament filament extruder filament winder filawinder Finishing Cycle finland fire firmware flexible flexible pla Flip cut flomio flower foam foam dart focus foldable food food safe foodini ford form 1 form 2 formlabs Formula foundry FRAC exhibition fractal frame framework France freed friction welding Front Drilling Cycle fuel3d fumes fun fundable furniture Furniture Design Future G Codes g-code G00 G01 G02 G02.1 G03.1 G07.1 G32 G33 G40 G41 G42 G70 G72 G73 G74 G75 G76 G77 G78 G79 G80 G83 G84 G85 G87 G88 G89 G90 G92 G94 gallium game gamechanger gaming Garage shop garage tool layout garden gartner ge gears geeks gemma geodesic geomagic germany gigabot github glass glass engraving cnc router glazing techniques glue gmax golemD google google glass gopro gpl granite Grasshopper Grasshopper attractor point Grasshopper data matching Grasshopper data trees Grasshopper Graph Mapper Grasshopper grids Grasshopper Image Sampler Grasshopper Light Painting Grasshopper Physics Simulation grasshopper planes tutorial Grasshopper tabs Grasshopper unroll tabs green guardian guerrilla gardening GUI guide Guitar Stand guitar stands gun magazines h-bot h480 Haas Vertical Mill hack hacking Hand carved rocking horse hand carving handheld handrail process haptic harvard Hass hbot hdpa health heat chamber heat gun heated 3d printing chamber heated build platform Helical Interpolation hexapod high strength HIPS history hollow out holograph Home Home CNC machine home manufacturing Home Shop CNC hot end hot glue Hot News hot to Hot-wire cutting hotend house household items how is china laser machine how is chinese cnc router how to HP humor huxley hybrid hype hyrel i2 i3 ice 3d printing idea lab ikea implant improv india indiegogo industrial industrial 3d printer infill infographic infrastructs injection molding ink inkjet 3d printer insects instructables instruction intel Intel Galileo intellectual property interior decoration interior decoration ceramic tiles interior design Interlocking Joint internet interview introduction to 3d printing Inventables ios ip ip rights ipad IR bed leveling irapid iron man Israel italy japan jet engine jewelry jinan laser jinan laser machine job jrx k8200 kai parthy kamermaker Kangaroo 2 Kangaroo 2 Catenary Kangaroo 2 Circle Pack Kangaroo 2 Planarize Kangaroo for Grasshopper Kangaroo Physics Kangaroo Tensile Forces kevlar key keyboard kickstarter kikai kinect kinetic sculpture kitchen cabinet process knife Korea kossel kossel air kraken Kuka PRC Kuka prc programming Kuka Robots KUKA|prc Kuka|prc sample l5 lamp large models large printer laser laser cut leather laser cutter laser cutting laser cutting foam laser cutting machine laser engraving machine laser machine laser machine sign laser machine video laser sintering lasercusing lasercut lasersaur latex lathe law lcd leap leapofrog leather led LED lights on figure sculpture leg lego lens lenticular printing letter cut letter cutting letter sign leveling leweb lewis LG liability library light bulb Light Painting Light Painting Stick limestone linear actuator Linear Bearings Linear Rails Linear Rails Upgrade link linux liquid Liquid Metal Jet Printing lisa lisa harouni lix lmd load bearing lock logo LOHAN london Longitudinal roughing cycle lost foam lost foam making lost foam mold making lost pla casting low cost low cost. LP lulzbot lumia lumifold lunavast lunchbox lyman lywood M Codes mach3 machine Machine Zero machinekit Machining machining wax madrid magazine magma magnetic filament magnets Mail (armour) maintenance make make magazine maker faire 2013 makeraser makerbot MakerBot Industries makerbotPLA MakerCon makerfaire makerfarm prusa makerslide makerware makible makibox making money with 3d printing maksim3d Malaysia mandel Manhattan manufacturer manufacturer video manufacturing map marble Mark Meier mark one mark34 market Marlin material materialise math plug-in mathematical object mathematics matsuura matterform Mazak mcor MDF Mebotics media medical applications of 3d printing medicine melamine mendel mendel90 mendelmax mendelmax 2 mesh related grasshopper plug-ins mesh related rhino plug-ins mesh repair for 3D printing meshes meshes in grasshopper meshes in rhino MeshUp metal 3d printing metal casting metal clay metal extruder metal filament metal hot end micro Microfactory microrax microscope microsoft MIG milestone military milkrap mill Milling mind interface mini cnc router miniFactory Mirror Image On / Off MIT mix MkMrA2 MkMrA2 shop mobile mobile 3d print control mobile factory moddler studios model quality modeling carving modification modillion carve modillion cnc router modillion engrave modillion engraving modillion machine modular mojo 3d printer mold molds molecule moon morgan mori motion motor motorola MRI mrrf MTU mug muli color multi color multi jet fusion multi materials multimod multiple guitar stands MULTIPLE REPETITIVE CYCLE Multiple Thread Cutting Cycle multitool museum music n nano nanobots nanoparticles NASA natural machines nature nerf gun nesting Netherlands new diy 3d printer new valence robotics new york newel post produce news newzealand cnc router nfc ninjaflex noisebridge nokia non cartesian Norway nozzle number cutting NV nyc nylon object Objet Objet Connex 500 octo extruder off topic office sign Offset Okuma Onsrud 5-axis router open sls open source open source 3d printer open source hardware openRail OpenSCAD optics optomec ordsolutions organic organic printing organovo orion ornament ornithopter os OS X otherfab othermachine othermill outdoor outdoor advertising p2p pandabot Panel Keys paper paper cut parametric parametric object by function parc Part Program partitioning partners past paste patent pbs pc pcb pcb milling Peck Drilling Cycle PEEK pellet pen people personal pet pet+ pets phantom desktop philips phoenix phone photo Photoformance photography photoshop pick and place pico piracy piratebay pirx PLA pla/pha plane components in grasshopper plant plasma cutter plastic mold plastic welding plasticine Plastics Plastics Overview play-doh plexy plotter plywood pocket poland polar polishing polyamide polycarbonate polyjet polypropylene polystyrene shaping polyurethane pongsat pop culture popfab porcelain poro-lay portabee portable 3d printer portable device portrait portrait sculpt portugal powder 3d printing power power supply precission cutter presentation preview price princeton print bed printhead Printrbot printrbot jr printxel problem problemsolving process products Profile turning Programmed Data Setting G10 project biped projet promotion prosthetic prosumer protoforge prototype prusa prusa i4 Publishing and Printing pump purse puzzle pva pvc pipes pwdr pypy python qr qu-bd quad extruder quadcopter quantum ord bot r360 Ra Ra radiant radio rail RAMBo RAMBo 1.2 ramps rapide raspberry pi re3d Recap recording Recreus recycling reddit relief sculpture repair repetier replacement part replacement parts replicator replicator2 reprap reprap wally reprappro repstrap resin retraction retro review RFID Rhino rhino math Rhino math plug-in Rhino meshes Rhino Nesting Grasshopper Sectioning Layout Rhino Python Rhino Python Scripting Rhino Python User Interface Rhino UI Rhino Unroll Rhino UnrollSrf Rhinoscript Rhombic Triacontahedron Fabrication; CNC Woodworking; 5-axis CNC richrap rings risk robo 3d robohand robot Robot Motion Study Robot Programming setup Robotic Digital Fabrication Robotic Light Paint Robotic Light Painting Robotic Motion Analysis robotic painting with light robots robox rocket rocking horse carved by hand ROFI rolls royce rostock rostock max rotary Rotating Model Stand Rotite rotomaak router rubber rubber band ruled surfaces russia safety sailplane Sainsmart sale samsung sand sand casting sander Sandvik Sanjay Mortimer satellite SAV scam scara school sciaky science screw sculpteo Sculpture Pedestals sea sectioning security sedgwick seed seemecnc selective laser sintering self assembly. sense sensor sensprout service servo setup KUKA|prc tutorial seuffer sf shandong laser Shapeoko shapeshop shapeways shapeways 3d printing sharing ship shoes shop Shop Built Side Table sieg siemens sign sign cut sign laser machine signage signature signing silicon silicone silk silver simpson Singapore single arm 3d printer singularity sintering Six-N-Sticks Skanect skimmer skull skylar tibbids sla slashdot slate slic3r slicer slip casting Slip Casting 3D Printed Objects slotted Slovenia sls smartphone smartrap Smoothieboard smoothing sneakey snowflake soapstone software soild concepts solar solder solid concepts solidator solidoodle solidoodle 2 solidoodle 4 solidus labs solution sony sound south africa space spaceX Spain spark speakers Spectrometer speed spider spin casting Spindle spoolhead sport spray 3d printing square carved rosettes Stack Lamination stair machine stair parts stair parts equipment stair parts processing stairparts machine Stamps School of Art & Design stanford star trek startups steampunk steel stepper stereolithography steve purdham stone stone carving store stratasys strength strong stuck students styrofoam block shaping styrofoam shaping subdivision mesh SubProgram success story sugar sugru suitcase sun Super Matter Tools support material surface surgery suspended deposition sweden swisspen Switzerland syringe table numbers cutting tablet tabletop tactile taiwan talk tangibot tantillus Tapping Cycle tattoo Taubman Colledge Taubman College Taubman college Agilus Workcell Taubman College FabLab taz 2 taz 3 taz 4 TED ted talks telescope temperature temperature measurement test testing textile the pirate bay theta thingiverse Thread threeform tiertime TIG tiger maple Tips Tips and Techniques titanium tool tool chain Tool Data Tool Nose Radius Compensation tools torrent Torus Knot Torus Knot Table touch touch x toy toyota TPE Transverse Cut-Off Cycle G75 trident trinitylabs trinityone trinket tu wien Turning turpentine tutorial tv Twist Table two color 3d printing type a machines Types of Plastic uav uformia UK ultem 2300 UltiController ultimaker ultimaker 2 ultimaker 3 ultrasonic unboxing university university of sauthampton unrolling up mini up plus 2 upgrade urethane USA usb user interface using a router to produce a ZBrush model using china cnc router uv 3d printing v-slot vader vapor velleman veterinary video vietnam viki lcd virtual reality virus visualization volumental voronator voronoi meshes voxeljet VR Vulture 2 vw Wallace Detroit Guitars wally Walnut Table wanhao warping wasp wasp 3d printer waste watch water water cooling wax way finding sign WCC CNC WCC NCT weapon wearable weaverbird web web app web interface wedding sign cutting wedding sign decoration cutting weistek Welding West Huron Sculptors what cnc router can do whiteant wideboy wifi wikiwep wind generator windows windows 8.1 Windows Keyboard Shortcuts windows mobile phone wire wire bender wired wireless 3d printing wobbleworks wood wood carving wood engraving wood frame 3d printer Wood Information Wood Joint Fabrication wood portrait Wood Species woodworking workflow working with planes in kuka|prc workspace x winder xeed xmass xt xyzprinting yale yeggi youth z axis zach hoeken ZBrush Basics ZBrush Decimation Master ZBrush Figure Sculpture ZBrush for Rhino users ZBrush Import and Export to and from Rhino ZBrush Portrait Sculpting ZBrush sculpting tutorial ZBrush Shaders Test ZBrush ZRemesher zeus zmorph zortrax китайский фрезерный станок с чпу фрезерный станок с чпу