,cnc machinist,cnc manufacturing,cnc mechanic,cnc mill,cnc milling center,cnc milling companies,cnc milling tools,cnc parts,cnc plasma cutter,cnc plasma cutting,cnc plasma table,cnc production,cnc router table,cnc screw machine,cnc service,cnc swiss,cnc turning,cnc turning center,cnc turning centers,cnc vertical lathe,horizontal cnc,how to cnc machine,machining cnc,manufacturing cnc machines,okuma cnc,plasma cnc machine,production cnc machining,troubleshooting cnc machines,used cnc machine tools,used cnc milling machines,vertical cnc lathe,what can a cnc machine make
Chris Barr from Australia developed his own error correction system using magnetic encoders that recognizes that 3d print went wrong and then tries to correct the problem.Chris writes:
At the moment, I’m using a linear magnetic encoder IC from AMS (the AS5311) on a small PCB I’ve designed, along with an ATmega328 to track the axis motion and implement I2C communication (also on the same IC).
This seems to be a relatively robust solution, and the encoder can track axis motions up to about 350mm/s – which I think covers speeds reached by most 3D printers.
Printer firmware is Marlin, with a few new bits I’ve thrown in to get this working.
Here you can see it working when Chris forcefully pushes the extruder by hand:
Project homepage:
http://chrisbarrbuilds.com/2016/04/3d-printer-error-detection/
You can find his code for this system at:
https://github.com/Aus3D/MarlinDev